Spelling suggestions: "subject:"minining engineering."" "subject:"minining ingineering.""
241 |
Friction stir processing for the reversal and mitigation of sensitisation and intergranular corrosion in aluminium alloy 5083-H321Meredith, Gavin Simon January 2014 (has links)
AA5083-H321 is an aluminum alloy commonly used in ship hull superstructures as it has a corrosion resistance which affords an excellent degree of protection in chloride-rich marine environments. Corrosion performance can degrade in a process called sensitisation, due to the precipitation of a β-phase onto grain boundaries with exposure to elevated temperatures over decades of service. Friction Stir Processing (FSP) has been evaluated as a method for locally reversing the degraded microstructure and removing a susceptibility to Intergranular Corrosion (IGC) in immersed and atmospheric conditions. Both the mechanical stirring and heat input to the plate by an FSP tool have been shown to remove the β-phase from grain boundaries which had been precipitated by a sensitisation heat treatment. Sensitisation was shown to cause intergranular corrosion of the alloy; however this susceptibility was removed after microstructural modification by FSP. A re-sensitisation treatment of the previously sensitised and FSP’d region was seen to precipitate coarser and more discrete β-phase particles onto grain boundaries, which corroded at a faster rate than the once-sensitised material under electrochemical testing. This indicates that corrosion resistance degrades more quickly with subsequent sensitisation.
|
242 |
Pressure infiltration behaviour and properties of aluminium alloy - Oxide ceramic preform compositesHuchler, Bernd Arthur January 2009 (has links)
In the pressure infiltration processing of Metal Matrix Composites (MMCs), molten metal is injected into a porous preform. This research investigated ways to optimize the processing and properties of MMCs with Al alloy matrices. A ceramic volume fraction of 0.30 to 0.40 was used to keep a preponderant metallic behaviour and the reactivity of MgO, TiO2, Al2O3-SiO2 and Al2O3-TiO2 preforms was compared to pure Al2O3. Two stages were found during infiltration: first, flow initiation characterised by the dynamic wetting angle ?dyn and, second, the advancing flow in the preform capillaries. Reactions were detected in the MMC but did not significantly influence the ?dyn. Unsaturated fluid flow was evaluated for the subsequent infiltration stage and good agreement was found between a numerical model and experimental data. The MMCs had improved properties compared to the pure alloy. Elastic moduli up to 148 GPa, bending strengths up to 456 MPa as well as reduced wear rate were found. The wear performance of extended ceramic ligaments, found in MMCs with spherical metal ligaments, exceeded all other materials. The improved understanding of the infiltration of preforms and the resulting MMC properties obtained in this research should lead to the development of tailorable composite materials.
|
243 |
Microstructure and degradation behaviour of Mg-Zn(-Ca) alloysLu, Yu January 2014 (has links)
Magnesium alloys are promising candidates for biomedical applications because of their advantageous properties. However, a too high degradation rate can be a problem. It is not desirable for the material to degrade completely before tissue healing has taken place. In this study, the relationship between the microstructure and bio-corrosion behaviour of Mg-3Zn(-0.3Ca) were analysed. It was found that nano-scale precipitates formed during ageing of Mg-Zn decrease the corrosion resistance. The increase in bio-corrosion rate with ageing time appears to be monotonic. The parallel filament-like corrosion trenches mirror the growth direction of the precipitates. The grain size and volume fraction of second phases are both key factors for controlling the bio-corrosion rate of Mg-Zn-Ca. The minimum corrosion rate was observed in the Mg-Zn-Ca solution treated at 420 \(^o\)C for 24 hours which has a balanced second phase volume fraction and grain size. 3D FIB and MicroCT tomography were used to show the internal structure of as-cast Mg-Zn and Mg-Zn-Ca. 3D reconstructions of corroded as-cast MZ3 and MZX30 were also shown. An HA (Ca5(PO4)3\(^.\)(OH)) coating was formed on Mg alloys. It was found that the pitting corrosion on the HA-coated alloys occurs and HA coating cannot provide sufficient protection to the Mg substrate.
|
244 |
The effect of carbon and silicon-based additives on the hydrogen storage properties of lithium borohydrideVines, Joshua Edwin January 2017 (has links)
LiBH\(_4\) was added to a number of different non-reactive additives in order to investigate their influence on the hydrogen storage properties of LiBH\(_4\). Graphite is a cheap and abundant material that has been used to destabilize hydrogen storage materials such as LiH. Ball milling graphite under Ar was shown to induce a higher amorphous content compared to milling under H\(_2\). The addition of LiBH\(_4\) to graphite milled under Ar resulted in a reduction of 102°C in the decomposition temperature of LiBh\(_4\). The effect of porous additives was investigated through the incorporation of LiBH\(_4\) into zeolite templated carbon (ZTC) and porous silicon. Confinement in these scaffolds resulted in a decrease in the decomposition temperature of LiBH\(_4\) by 125°C. The smaller pore size of ZTC was found to have the greatest effect on the H\(_2\) onset and cyclic stability of LiBh\(_4\). The pre-melting of LiBh\(_4\) into porous scaffolds was shown to eliminate B\(_2\)H\(_6\) release during decomposition. No correlation between the surface area of the additives and decomposition temperature of LiBH\(_4\) was observed. Although none of the materials studied in this work meet the United States DoE targets, confinement of LiBH\(_4\) in porous structures offers a promising approach to unlocking its potential.
|
245 |
Fatigue and fracture of the ultrahigh strength steel AerMet 100Hill, Paul Owen January 2012 (has links)
This thesis considers the fatigue and fracture behaviour of ultra-high strength steel, AerMet 100. Two variants of AerMet 100 were tested, which had different desulphurisation and deoxidation methods. The first was desulphurised and deoxidised using mischmetal, designated MMAerMet 100. The second was desulphurised using calcium and deoxidised using titanium, designated Ca-AerMet 100. Axial fatigue testing below the 0.2% proof stress was carried out between stress ranges of 900-1700 MPa. Fractography revealed that the fatigue initiation sites could be traced to non-metallic inclusions. Samples tested in the longitudinal orientation had better fatigue lives compared to samples tested in the transverse orientation. A stress intensity factor range at the cracked inclusion at the point of initial fatigue crack growth showed a good correlation with fatigue life. Ca-AerMet 100 consistently had a better fatigue life compared to MM-AerMet 100. Fracture toughness testing showed that both variants of AerMet 100 had similar fracture toughness values and fractured by micro-void coalescence. Fractography revealed that 90% of the fracture surface was made from voids formed from secondary particles with approximate diameters of 90 nm. The work suggests that changing the desulphurisation and deoxidation method for AerMet 100 has not significantly affected the fracture toughness.
|
246 |
Determination of metal quality of aluminium and its alloysDispinar, Derya January 2006 (has links)
Aluminium alloy castings are being used increasingly in safety-critical applications in the automotive and aerospace industries. To produce castings of sufficient quality, it is, therefore, important to understand the mechanisms of the formation of defects in aluminium melts, and important to have a reliable and simple means of detection. During the production of aluminium ingots and castings, the surface oxide on the liquid is folded in to produce crack-like defects (bifilms) that are extremely thin, but can be extremely extensive, and so constitute seriously detrimental defects. However, the presence of bifilms has not been widely accepted, because there has been no single metal quality test that has been able to resolve features that are only nanometres, or sometimes micrometres, in thickness. In the past, porosity has usually been held solely responsible for most failures in aluminium alloys, and hydrogen has been blamed as the actual cause. In this work it has been found that bifilms are the initiator and hydrogen is only a contributor in the porosity formation process. For the first time, evidence is presented for the contribution of air (or perhaps more strictly, residual nitrogen from air) as an additional gas, adding to hydrogen in pores in cast Al alloys. The Reduced Pressure Test (RPT) is used which is a simple and widely known test, is cost effective and involves no complicated equipment or consumables, thus recommending it for implementation on the foundry floor. On this basis, several Al-Si based alloys were studied. A quality index -Bifilm Index- is introduced to quantify the results of the reduced pressure test. In addition, mechanical tests were carried out to correlate bifilm index with mechanical properties.
|
247 |
Warm compaction of aluminium alloy Alumix 123Meluch, Lubos January 2010 (has links)
The aims of this study were to understand and improve the mechanical properties of aluminium Al-Cu-Si-Mg P/M alloy Alumix 123 by application of a warm compaction process. They were achieved by investigating the effect of (a) compaction pressure/temperature, (b) admixed lubricants (e.g. Acrawax C and Kenolube P11) on green/sintered density and mechanical properties of compacts. It was found that compaction at 110ºC led to (1) a reduction in the ejection force up to ~ 40 % and (2) an increase in sintered density up to ~ 98 % of theoretical density. After heat treatment at 200ºC for 5 hours (T6), the tensile strength reached ~ 365 MPa and hardness of ~ 126 HV was achieved. Further improvement of mechanical properties of aluminium alloy Alumix 123 can be achieved by reducing the amount of admixed lubricant to 0.5 wt %, and using Acrawax C as the lubricant rather than Kenolube P11. Taguchi analysis was used to identify which parameter (compaction pressure, temperature and lubricant content) affected the densities and mechanical properties of Alumix 123 specimens with single lubricants the most. It was observed that the most effective parameter in warm compaction of Alumix 123 specimens is the lubricant content.
|
248 |
Development of bi- and multicomponent fibres for tissue engineering by electrospinningEro-Phillips, Olubayode Oladiran January 2012 (has links)
This project investigated the possibility of tailoring the crystallinity of electrospun fibres (crystallinity studies), and the electrospinning of bi- and multicomponent scaffolds of PLLA. During the crystallinity studies, the effects of various electrospinning process parameters on the crystallinity of electrospun poly(L-lactic acid) (PLLA) fibres were investigated. It was observed that the electrospun fibres had crystallinities between 23 and 46% while that for the as-received granule was 37%, suggesting that the crystallinity of electrospun fibres can be controlled by optimizing the electrospinning process. These results showed that the degree of crystallinity of the electrospun fibres decreased with increasing the polymer solution concentration. Furthermore, an optimum electrospinning voltage at which the maximum degree of crystallinity can be obtained was observed. Finally, bi-component scaffolds based on PLLA and gelatin were electrospun. Multicomponent scaffolds based on PLLA, gelatin and hydroxyapatite (HA) were electrospun followed by electrospraying of the HA phase. Blending gelatin with PLLA resulted in an approximate 50% decrease in fibre diameter. Biocompatibility studies revealed that all scaffolds permitted cell attachment with best results observed on the PLLAGel-HA scaffolds. This was attributed to the exposed HA particles on the surface of the PLLAGel-HA scaffolds which promoted better binding with integrins for osteoconductivity.
|
249 |
First-principles study of solute diffusion mechanisms in alpha-TiScotti, Lucia January 2016 (has links)
Diffusion mechanisms govern a wide range of phenomena in condensed matter including high-temperature deformation. The good influence of slow diffusers such as Si on the creep properties of α-Ti alloys is well documented, as well as the detrimental effect of fast-diffusers such as Fe, Co and Ni. The life-performance of α-Ti alloys at high temperature is also limited by light elements (O, C and N) that promote the fragile α-case phase. The study of diffusion mechanism is experimentally not trivial, since the anisotropy hcp structure of α-Ti requiring single crystal sample. The first-principles approach together with analytical models and Kinetic Monte Carlo simulations can predict the diffusivity values giving additional information on mechanism itself. This work presents the ab initio study of vacancy-mediated diffusion of substitutional atoms as Si, Al, Ga, Ge, In and Sn, interstitial migration of light elements, and anomalous behavior of fast-diffusers. The findings show that the substitutional diffusion is affected by the bonding characteristic. The interstitial sites through which light elements dissolve and diffuse were updated, and they can explain the anisotropy behaviour of these solutes. The results confirm that the anomalous behaviour of fast-diffusers is a results of their ability to dissolve interstitially and substitutionally.
|
250 |
Microstructural characterisation and modelling of dilute magnesium-tin-aluminium alloysDouglas, Gareth January 2018 (has links)
The ageing process of two magnesium alloys with compositions of Mg-1.75Sn-1.93Al and Mg-1.29Sn-2.85Al(at%) have been investigated. Three ageing times, 40, 72 and 160 hrs, were selected to correspond to the early growth, peak hardness and coarsened stage of the alloys and the hardness measured. Subsequently, the precipitates in the alloys have been classified by 4 morphologies, basal plates, 〈112 ̅0〉 laths, pyramidal laths and prismatic rods. and identified as Mg2Sn before the number density and size of the precipitates was measured. This has been achieved through a combination of X-ray Diffraction, Scanning Electron Microscopy and Transmission Electron Microscopy. Moreover, an Orientation Relationship of (0001)α//(111)β,[112 ̅0]α//[110]β was found to be common to three of the four morphologies with the pyramidal laths not conforming to a well-defined orientation relationship. This is then linked through observation to the lack of a common habit plane or growth direction for these pyramidal precipitates. The obtained data has then been used to model the nucleation and growth of the precipitates using a Kampmann-Wagner Numerical framework, where key parameters such as the diffusion rate of Sn and the interfacial energy of the precipitates were fitted. This leads into a simulated strength against the ageing time which has been compared to the initial hardness measurements made. This has good agreement with not only the overall number density and precipitate sizes but also the size distribution of the precipitates The effect of the two microstructures on the differing mechanical properties has been discussed, highlighting the importance of number density over the different precipitate morphologies observed, and future experiments outlined.
|
Page generated in 0.0906 seconds