• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 239
  • 60
  • 60
  • 60
  • 60
  • 60
  • 60
  • 35
  • 11
  • 8
  • 5
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 828
  • 828
  • 470
  • 412
  • 157
  • 58
  • 58
  • 44
  • 42
  • 38
  • 37
  • 36
  • 34
  • 32
  • 30
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
481

Plasma surface engineering and characterisation of biomedical stainless steels

Buhagiar, Joseph January 2008 (has links)
Low temperature plasma surface alloying with nitrogen (nitriding), carbon (carburising) and both (carbonitriding) has been successfully employed in hardening medical grade ASTM F138, ASTM F1586 and ASTM F2581 as well as engineering grade AISI 316 by the formation of a modified layer better known as S-phase or expanded austenite. In this study, systematic plasma treatments and characterisation were performed on medical grade stainless steel in order to establish the optimised treatment conditions, especially temperature, which can maximise the hardened case depth without any detriment in corrosion resistance. The surface of a biomaterial must not adversely affect its biological environment and return the material surface must not be adversely affected by the surrounding host tissue and fluids. Experimental results have shown that this duality of concern can be addressed by creating S-phase. It has been shown that low-temperature nitriding (430°C), carburising (500°C) and carbonitriding (430°C) improved the localised corrosion, corrosion-wear and fretting-wear resistance of these medical grade stainless. Also biocompatibility studies have proved that these hardened surfaces were biocompatible under the realms of the tests conducted in this study therefore the use of hardened medical grade austenitic stainless steel might be suitable in implant applications.
482

Environmentally friendly pultrusion

Irfan, Muhammad Shafiq January 2013 (has links)
This thesis reports on an environmentally-friendly pultrusion technique for the production of fibre-reinforced composites, termed as “clean pultrusion”. In this new manufacturing technique, the resin bath used in the conventional pultrusion was replaced with a custom-built resin impregnator. The resin impregnator was designed and built to impregnate the rovings using a combination of pin, injection and capillary-based impregnation. An integral aspect of the clean pultrusion process was spreading of the filaments in the rovings, via mechanical means, prior to impregnation. An automated fibre spreading rig was designed and built based on “tension-release” process. The rig-design was optimised using Taguchi method. The physical, mechanical and thermo-mechanical properties of the composites pultruded using the clean and conventional techniques were compared. It was found that the composites manufactured using the clean pultrusion exhibited lower void and better mechanical properties. A life cycle assessment (LCA) was also performed to compare the environmental impact of the clean and conventional pultrusion processes. The LCA demonstrated conclusively that the clean pultrusion technique offers several environmental advantages over the conventional resin-bath pultrusion. The new pultrusion technique was demonstrated as being a viable method to pultrude composites without using a resin bath.
483

Net-shape hot isostatic pressing of a nickel-based powder superalloy

Qiu, Chunlei January 2010 (has links)
Microstructural analysis and mechanical property assessment have been carried out on hot isostatically pressed (HIPped) and heat treated samples of RR 1000 powder to assess Net Shape HIPping as a process-route for aero engine components. HIPping led to (Hf,Zr)-rich oxides and carbides on prior particle boundaries (PPBs) which could be coarsened, but not eliminated by changing the HIP procedure. HIPping above the γ′ solvus resulted in coarser grains with serrated boundaries and in the formation of irregular-shaped secondary γ′ and fan-type γ-γ′ structures. Factors which influence the growth and morphology of γ′ particles are considered and it is shown that particle impingement dominates in the formation of irregular γ′ during continuous cooling from supersolvus. Solution treatment near the HIPping temperature led to thermally induced pores (TIP) but lower temperatures avoided TIP and changed the γ′ size, distribution and morphology giving a large volume fraction of finer cuboidal secondary γ′ and medium-sized spherical tertiary γ′.
484

The effect of microwave radiation on mineral processing

Vorster, Werner January 2001 (has links)
Between 50% and 70% of the total energy used in the extraction process may be attributed to comminution. Microwave pre-treatment has been suggested as a means to decrease the energy requirements. A variety of mineral ores have been investigated and the effects of microwave radiation quantified in terms of the mineralogy, changes in the Bond Work Index, flotability and magnetic separation. It has been shown that microwave pre-treatment is most effective for coarse grained ores with consistent mineralogy consisting of good microwave absorbers in a transparent gangue (up to a 90% decrease in Bond work index for Palabora copper ore) whereas fine grained ores consisting predominantly of good absorbers are not affected as well (a reduction of only 25% in work index for Mambula ore). Although the mineralogy of minerals are affected by exposure to microwave radiation, flotability and magnetic separation characteristics have been shown not to be adversely affected, unless the microstructure is completely destroyed after prolonged microwave exposure. Computer simulations have shown that significant changes to comminution circuits are possible as a result of microwave induced work index reductions (three mills reduced to one). Purpose-built microwave units may hold the solution for more efficient mineral extraction in the near future.
485

Microstructure and texture characterisation of linear friction welding of Ti-6Al-4V and Ti-6Al-2Sn-4Zr-6Mo

Guo, Yina January 2013 (has links)
Linear friction welding (LFW) of two α - β titanium alloys, Ti-6Al-4V (Ti64) and Ti-6Al-2Sn-4Zr-6Mo (Ti6246) was studied, focusing on micro-hardness measurement, microstructure and texture characterisation. It has been found that in the as-welded condition Ti6246 has lower micro-hardness values in the weld region than in the base material, while for Ti64 the weld region is harder. The change in hardness is greatly related to the microstructures formed after welding. In cnetre weld zone (CWZ), in the autogenous Ti6246 weld, the microstructure consists of fine β grains with needle shape orthorhombic α″. In the autogenous Ti64 weld, relatively large acicular martensitic α′ phase was found. A very strong texture component, where the basal pole is concentrated in the sample normal direction and one of the {11 20}α poles is concentrated in the oscillation direction, is identified in both the CWZ and thermo-mechanically affected zone. Comparison between the α texture and the β texture suggests that the strong texture component T is the consequence of the deformation β texture developed at high temperature and the preferred variant selection during the β→α transformation. The texture was found to have significant influence on the fracture toughness of the weld region.
486

Recovery of lithium from kaolin mining waste material

Iqbal, Zubera January 2015 (has links)
Lithium is considered a borderline strategically important metal for the UK due to the limited availability of primary deposits, of sufficient grade, for economic processing (Naden, 2012). The rising demand, of approximately 10% yearly, has promulgated investigations for the development of secondary sources of lithium in order to secure long term reserves for the UK and Europe (Jaskula, 2015). The British Geological Survey (1987) estimated that the St Austell granite contained up to 3.3 million tonnes of recoverable lithium. Imerys Ltd also identified lithium-bearing mineral in their kaolin waste material in Beauvoir, containing up to 0.89 wt.% Li2O. The lithium-bearing minerals identified were; lepidolite (K(Li,Al)3(Si,Al)4O10(F,OH)2) and zinnwaldite (KLiFeAl(AlSi3)O10(F,OH)2), which can contain between 3.0 to 7.7 wt.% Li2O and 2.0 to 5.0 wt.% Li2O, respectively (Garrett, 2004). Lithium flotation concentrates containing up to 5.0 wt.% Li2O were optimised for the Beauvoir waste material with up to 80% lithium recoveries, whereas a lower flotation grade of 0.5 wt.% Li2O was found for the St Austell material. The St Austell waste materials did not prove viable to process via conventional flotation routes hence a novel process route for the bio-recovery of lithium from lithium rich micas was developed. Extraction of lithium by bioleaching has demonstrated the ability of fungi, of Aspergillus niger group, to leach lithium from the lepidolite in significant quantity, achieving 125mg/L of lithium in solution after twelve weeks of bio-leaching, at a recovery of 45%. Following this research, Imerys are applying to build a pilot plant, securing funding through the Innovative UK grant.
487

Corrosion of titanium for biomedical applications

Yu, Fei January 2015 (has links)
Ti has been widely used in biomedical fields since the 1950s because of biocompatibility, corrosion resistance and suitable mechanical properties. However, corrosion-related failures of Ti implants are observed. Ti corrosion products are reported to induce unfavourable biological responses, which may lead to failures of Ti implants. Corrosion of three grades of Ti (CP-Ti Grade2, CP-Ti Grade4 and Ti6Al4V) in simulated peri-implant environments was investigated by solution analysis, surface analysis and electrochemical tests. Lipopolysaccharide, a component of bacterial cell walls and a mediator of peri-implant inflammation, was observed to enhance Ti corrosion in slightly acidic and neutral conditions (pH 4-7) whilst it inhibited Ti dissolution in highly acidic environments (pH 2). Both albumin, an abundant protein, and H₂O₂, an important inflammation product, influenced corrosion of Ti6Al4V and the co-existence of both species considerably enhanced Ti release than either species in isolation. The β phase of Ti6Al4V was preferentially attacked in H₂O₂. The presence of an early coloniser of dental implants Streptococcus sanguinis and human neutrophils, abundant immune cells, promoted Ti release. Mechanically-assisted crevice corrosion simulation was demonstrated with development of aggressive crevice chemistry. Albumin decreased the abrasion charge of Ti6Al4V while LPS and H2O2 did not show a measurable change.
488

Corrosion, transport, and deposition in pressurised water nuclear reactor primary coolant systems

Morrison, Jonathan J. January 2016 (has links)
Several unscheduled shut downs of the Cruas nuclear power plant in France have been caused by the deposition of corrosion products in flow broaches of the steam generator tube support sheets. The depositions are theorised to be the result of electrokinetically stimulated deposition. In this work, a hot water loop to replicate these depositions in the laboratory was built, along with rigs to characterise supporting phenomena – the corrosion rate of stainless steel and the solubility of the corrosion products. While the data obtained from the hot water loop did not provide conclusive proof of the existence or prevalence of the electrokinetically stimulated deposition mechanism, evidence of deposition caused by cavitation was found. The corrosion rate of stainless steel was measured at high temperatures in solutions of lithium hydroxide at various concentrations. Surface finish was found to have an effect on the corrosion rate, though the difference between mechanically ground surfaces with an order of magnitude difference in roughness was found to be minimal. The solubility of the corrosion products formed was measured and found to be of similar order to that reported in the literature, however the minor alloying elements were found to leach from the surface in substantial quantities.
489

Experimental optimization of the CAPRI process

Shah, Amjad January 2011 (has links)
An experimental study was carried out concerning the optimization of catalyst type, operating conditions, addition of water and hydrogen for use in the THAI-CAPRI process and is reported. Three feeds namely, THAI field oil, Combustion Cell Oil (CCO) and n-decane were used in the presence of catalyst or an inert medium for comparison. Experiments were carried out using micro-reactors containing 5 g catalyst under different temperatures, pressures and gas environments. It was found that there was a trade-off in operation temperature between upgrading performance and catalyst lifetime. At higher temperatures of 500 °C led to an average of 6.1 °API upgrading , however, the catalyst lifetime was limited to 1.5 hours. Operation at 420 °C was found to be a suitable compromise, with upgrading limited up to 3 °API, with catalyst lifetime extended to 77.5 hours. From the results of the current study it can be said that by careful control of the temperature and oil flow rate in the in-situ CAPRI process, additional upgrading compared with the THAI process alone may be effected, resulting in a more valuable produced oil, which is easier to transport and could be further processed into distillates.
490

Sustainable self-healing structural composites

Wang, Yongjing January 2017 (has links)
Self-healing composites are composite materials capable of automatic recovery when damaged. They are inspired by biological systems such as the human skin which are naturally able to heal themselves. Over the past two decades, two major self-healing concepts – based respectively on the use of capsules and vascular networks containing healing agents - have been proposed and material property recovery has been enhanced from 60% to nearly 100%. However, this improvement is still not sufficient to allow self-healing composites to be applied in practice because the healing capability varies with many external factors such as ambient temperatures and damage conditions. The key to the practical application of self-healing composites is to promote the sustainability of healing capacity to make the recovery robust. The thesis presents various techniques to enhance the healing capacity of fibre-reinforced composites to realise strong recovery regardless of ambient temperatures or material types. It presents the effects of various popular configurations of vascular networks on the flexural properties and healing performances of fibre-reinforced composites. The thesis demonstrates a design enabling recovery at ultra-low temperatures by using hollow vascular networks and porous heating elements. It also presents a new healing mechanism to repair the broken structural carbon fibres by incorporating conventional healing agents with short carbon fibres which could be aligned in an in situ electric field. The mechanism was also adopted to enable the restoration of the conductivity of a fibre-reinforced composite incorporating a porous conductive element, a carbon nanotube sheet, which could be used as a heating actuator or a sensing component. Thus, the development reported in this thesis have contributed to promoting the sustainability of the recovery of self-healing composites.

Page generated in 0.2699 seconds