• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Minor Components and Their Roles on Lipid Oxidation in Bulk Oil That Contains Association Colloids

Chen, Bingcan 01 May 2012 (has links)
The combination of water and surface active compounds found naturally in commercially refined vegetable oils have been postulated to form physical structures known as association colloids. This research studied the ability of 1,2-dioleoyl-sn-glycerol-3-phosphocholine (DOPC) and water to form physical structures in stripped soybean oil. Interfacial tension and fluorescence spectrometry results showed the critical micelle concentration (CMC) of DOPC in stripped soybean oil was 650 and 950 microM, respectively. Light scattering attenuation results indicated that the structure formed by DOPC was reverse micelles. The physical properties of DOPC reverse micelles were determined using small-angle X-ray scattering (SAXS) and fluorescence probes. These studies showed that increasing the water concentration altered the size and shape of the reverse micelles formed by DOPC. The impact of DOPC reverse micelles on the lipid oxidation of stripped soybean oil was investigated by following the formation of primary and secondary lipid oxidation products. DOPC reverse micelles had a prooxidant effect, shortening the oxidation lag phase of SSO at 55 °C. It also was not able to change the lipid oxidation of stripped soybean oil compared with DOPC reverse micelles at same concemtration ( i.e., 950 microM). 1,2-dibutyl-sn-glycerol-3-phosphocholine (DC4PC) which has the shorter fatty acid than DOPC was not able to form association colloids and did not impact lipid oxidation rates. This indicated that the choline group of the phospholipid was not responsible for the increased oxidation rates and suggested that the physical structure formed by DOPC was responsible for the prooxidant effect. The impact of the DOPC reverse micelles on the effectiveness and physical location of the antioxidants, alpha-tocopherol and Trolox was also studied. Both non-polar (alpha-tocopherol) and polar (Trolox) were able to inhibit lipid oxidation in stripped soybean oil in the presence of DOPC reverse micelles. Trolox was a more effective antioxidant than alpha-tocopherol. Fluorescence steady state and lifetime decay studies suggested that both alpha-tocopherol and Trolox were associated with DOPC reverse micelle in bulk oil. Trolox primarily concentrated in the water pool of reverse micelle since it quenched NBD-PE fluorescence intensity with increasing concentrations. A portion of alpha-tocopherol was also associated with the aqueous phase of the DOPC reverse micelles but this was likely at the oil-water interface since alpha-tocopherol is not water soluble. The addition of ferric chelator, deferoxamine (DFO) to stripped soybean oil significantly prevented the lipid oxidation caused by DOPC reverse micelles as the lag phase was extended from 2 to 7 days. DFO was also found to increase the antioxidant activity of both Trolox and alpha-tocopherol. Trolox and alpha-tocopherol were found to be rapidly decomposed by high-valence Fe(III) while low-valence-state (Fe (II) was much less reactive. Fe(III) was also consumed by both hydrophilic Trolox and lipophilic alpha-tocopherol presumably though reduction to Fe (II). DOPC reverse micelles were able to decrease antioxidants-iron interactions as evidence by a decrease in antioxidant depletion by iron and a decrease in iron reduction by the antioxidants. These results suggested that the ability of DFO to increase the antioxidant activity of alpha-tocopherol and Trolox was due to its ability to decrease free radical production and not its ability to decrease direct iron-antioxidant interactions. Overall, the results presented in this dissertation show phospholipids and water can form reverse micelles in edible oils. These reverse micelles increase lipid oxidation rates by increasing the prooxidant activity of iron. Free radical scavenging antioxidants can inhibit oxidation promoted by the reverse micelles with polar Trolox being more effective than non-polar alpha-tocopherol presumably because Trolox is more highly associated with the reverse micelle. The reverse micelles produced by DOPC protected alpha-tocopherol and Trolox from direct degradation by iron. The knowledge gained from this study will improve our understanding of the mechanism of lipid oxidation in bulk oils which will hopefully provide new technologies to improve the oxidation stability of edible oils. For example, it may be able to use oil refining technologies to remove prooxidative minor components that for physical structure in bulk oils.
2

Modulation de la cristallisation de la matière grasse laitière en phase continue ou dispersée / Modulation of milk fat crystallization in bulk phase and emulsion

Bayard, Mathilde 04 April 2018 (has links)
La matière grasse laitière anhydre (MGLA) est composée à plus de 98 % de triglycérides. Leur diversité, liée à la nature des acides gras estérifiés, induit un comportement complexe de la MGLA lors de sa cristallisation. Par ailleurs, d’autres composés, dits mineurs, présents de manière endogène ou formés lors de procédés de transformation peuvent moduler le processus de cristallisation. Néanmoins, leurs modes d’action sont encore mal connus, rendant la maitrise du processus de cristallisation délicat. La mise en oeuvre de méthodes de caractérisation à différentes échelles (RMN, diffraction des rayons X, microscopie optique, analyse thermique différentielle, rhéologie) et à différentes températures permet de discriminer les mécanismes d’action des composés mineurs sur la cristallisation de la MGLA en phase continue ou dispersée. Ainsi, les composés mineurs modifient la cinétique de cristallisation de la MGLA, en agissant sur ses deux étapes, la nucléation et la croissance. En accélérant ou en ralentissant la vitesse de cristallisation, ils modifient la nature et/ou la structure du réseau cristallin et, éventuellement, les propriétés macroscopiques de la matière grasse. Les mécanismes d’action des composés mineurs sur la cristallisation de la MGLA dépendent de leur nature chimique (longueur de la chaine carbonée, degré d’insaturation, estérification) et de leur concentration. Lorsque la matière grasse est émulsionnée, son confinement et la création d’interfaces complexifient le processus de cristallisation : les composés mineurs modulent la cristallisation via l’interface ou la phase grasse selon leur affinité préférentielle pour l’une ou l’autre des deux phases de l’émulsion et induisent des propriétés thermiques et structurales spécifiques. Ce travail permet, donc, de mieux comprendre les facteurs qui modulent la cristallisation de la matière grasse et ainsi de mieux maitriser l’un des processus déterminants dans l’élaboration de la structure et de la fonctionnalité des produits laitiers. / Anhydrous Milk Fat (AMF) comprises more than 98% triglycerides. The diversity of the esterified fatty acids induces a complex behavior of AMF during crystallization. In addition, other minor components, either endogenously present or added upon processing modulate AMF crystallization. Nevertheless, the mechanisms underlying their mode of action are still poorly understood, making the mastery of fat crystallization difficult. Several characterization methods (NMR, X-ray diffraction, optical microscopy, differential scanning calorimetry, rheology) were implemented to screen a large set of minor components at different scales and temperatures. The approach enabled to gain knowledge about the involved mechanisms, both in bulk and in the emulsified state. Minor components modify the kinetics of AMF crystallization through their impact on the two main stages of the process, nucleation and growth. By accelerating or slowing down the rate of crystallization, they modify the nature and/or the structure of the crystal lattice and, possibly, the macroscopic properties of AMF. The impact of minor components on AMF crystallization depend on their chemical nature (length of the carbon chain, degree of unsaturation, esterification) and on their concentration. When fat is emulsified, confinement and interfacial effects come into play. Minor components modulate crystallization via the oil/water interface or via the fat phase depending on their preferential solubility, which may induce specific thermal and structural properties. On the whole, this study enables a better understanding of the factors that modulate milk fat crystallization and provides useful guidances for a better control of this key process controlling the structure and function of dairy products.

Page generated in 0.0839 seconds