• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 7
  • 7
  • 7
  • 5
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Binding of Bisbenzamidines with AT Rich DNA: A Thermodynamic Study

Kilpatrick, Nancy A 06 July 2011 (has links)
Diamidines are small molecules that generally possess antiparasitic properties and bind preferentially to the minor groove of AT rich DNA. With the goal of getting a better understanding of the thermodynamic driving forces and binding affinities, a series of pentamidine analogs were investigated with various AT rich DNA by ITC, UV-Vis and fluorescence spectroscopic methods. Findings suggest that the substitution of the linker oxygen of pentamidine to a nitrogen slightly improves the binding affinity. All of the investigated compounds are entropically driven at 25 oC with non-alternating AT DNA. Additionally, the increased fluorescence of the nitrogen and sulfur linked analogs will enable future work to be done with fluorescence microscopy to help determine if and where these compounds accumulate in the target organism.
2

Binding, Bending and G Jumping in the Minor Groove: Experimental and Theoretical Approaches

Rahimian, Maryam 29 October 2008 (has links)
It has been shown that heterocyclic diamidines, a class of minor groove binders, are promising antimicrobial agents. These compounds bind none covalently to the minor groove of A/T rich regions of the kinetoplast DNA and kill the parasite. The mechanism of action of these compounds is not well understood, yet many hypotheses have been proposed. One of the methods that improve the specificity is cooperative binding. Since there are many binding sites available in k-DNA thus the cooperativity in adjacent binding sites is desirable. A library of compounds has been scanned and few of those compounds identified that are able to bind to two adjacent A/T binding sites separated by a single G. Many biophysical methods such as isothermal titration calorimetry, surface Plasmon resonance, circular dichroism and thermal melting have been used to explore the thermodynamic profiles and binding mode of these compounds. The pulsed field gradient NMR was used to investigate the structural changes to the DNA sequence upon binding of the minor groove binders and find a correlation between their biological difference and structural changes. The molecular dynamics was applied to look at the interaction of some of the heterocyclic diamidines to the DNA with more details and predict the unknown structures.
3

Structural Factors that Influence the Inhibition of Type II Restriction Enzymes by Minor Groove Binders

Nguyen, Ha Hoang 13 April 2009 (has links)
The objective of this thesis was to study whether heterocyclic dicationic compounds that are minor groove binders have the ability to inhibit the digestive properties of type II restriction enzymes which bind to the major groove of the DNA. If these compounds do possess the ability to inhibit restriction enzymes, then what factors influence their ability to inhibit the restriction enzymes? The methods used to study the interactions of DNA, compounds, and enzymes are gel electrophoresis, DNA thermal melting, and circular dichroism. The results from this project reveal that the minor grove binding compounds are able to inhibition type II restriction enzymes. The inhibition is heavily influenced by compound structure and the DNA binding sequence of the enzyme.
4

Heterocyclic Diamidines Induce Sequence Dependent Topological Changes in DNA; A Study Using Gel Electrophoresis

Tevis, Denise Susanne 17 April 2009 (has links)
Diamidines are a class of compounds that target the minor groove of DNA and have antiparasitic and antimicrobial properties. Their mechanism of action has not been fully elucidated, but may include changes in DNA topology. In this study we have investigated such changes using methods of gel electrophoresis including ligation ladders and cyclization assays. We found that topology changes were sequence dependent. Compounds typically caused non-anomalously migrating ATATA sequences to migrate as if they were bent, while A5 sequences that normally migrated anomalously became less so in the presence of certain diamidines. Select compounds induced changes in cyclization efficiency that were also sequence dependent; DB75 significantly abolished cyclization in A5 containing sequences but enhanced it in sequences containing ATATA sites.
5

Two-site DNA Minor Groove Binding Compounds

Sheldon Deuser, Shelby Diane 12 July 2012 (has links)
DNA minor groove binding compounds have had limited therapeutic uses, in part due to problems with sequence specificity. A two-site model has been developed to enhance specificity, in which compounds bind to two short AT sites separated by one or two GC base pairs. Using thermal melting, heterocyclic dications with this capability were tested with various oligonucleotides for binding affinity and specificity. Compounds of interest were further probed using circular dichroism, mass spectrometry, biosensor-SPR, and molecular modeling. Several compounds were found to “jump” a GC base pair, binding to AT sites in the minor groove of DNA with a two-site recognition mode. One compound was also found to recognize a single intervening GC base pair. Compounds with terminal, non-polar amidine extensions were found to have increased DNA binding compared to analogs with terminal amidines. This unique, two-site DNA recognition mode offers novel design principles to recognize entirely new DNA motifs.
6

Application of Computer-Aided Drug Discovery Methodologies Towards the Rational Design of Drugs Against Infectious Diseases

Athri, Prashanth 30 April 2008 (has links)
Computer-aided drug discovery involves the application of computer science and programming to solve chemical and biological problems. Specifically, the QSAR (Quantitative Structure Activity Relationships) methodology is used in drug development to provide a rational basis of drug synthesis, rather than a trial and error approach. Molecular dynamics (MD) studies focus on investigating the details of drug-target interactions to elucidate various biophysical characteristics of interest. Infectious diseases like Trypanosoma brucei rhodesiense (TBR) and P. falciparum (malaria) are responsible for millions of deaths annually around the globe. This necessitates an immediate need to design and develop new drugs that efficiently battle these diseases. As a part of the initiatives to improve drug efficacy QSAR studies accomplished the formulation of chemical hypothesis to assist development of drugs against TBR. Results show that CoMSIA 3D QSAR models, with a Pearson’s correlation coefficient of 0.95, predict a compound with meta nitrogens on the phenyl groups, in the combinatorial space based on a biphenyl-furan diamidine design template, to have higher activity against TBR relative to the existing compound set within the same space. Molecular dynamics study, conducted on a linear benzimidazole-biphenyl diamidine that has non-classical structural similarity to earlier known paradigms of minor groove binders, gave insights into the unique water mediated interactions between the DNA minor groove and this ligand. Earlier experiments suggested the interfacial water molecules near the terminal ends of the ligand to be responsible for the exceptianlly high binding constant of the ligand. Results from MD studies show two other modes of binding. The first conformation has a single water molecule with a residency time of 6ns (average) that is closer to the central part of the ligand, which stabilizes the structure in addition to the terminal water. The second conformation that was detected had the ligand completely away from the floor of the minor groove, and hydrogen bonded to the sugar oxygens.
7

Chemical and Biological Explorations of the Family of CC-1065 and the Duocarmycin Natural Products.

Ghosh, Nandita, Sheldrake, Helen M., Searcey, M., Pors, Klaus 10 1900 (has links)
yes / CC-1065, the duocarmycins and yatakemycin are members of a family of ultrapotent antitumour antibiotics that have been the subject of extensive investigations due to their mode of action and potential in the design of new anticancer therapeutics. The natural products and their analogues exert their effects through a sequence selective alkylation of duplex DNA in the minor groove at the N3 of adenine. An understanding of their structure and its effect on biological activity has been derived through chemical synthesis and has also generated new potential lead compounds. These studies form the first section of the review. The desire to progress these compounds to clinic has also led to studies of bioconjugation and prodrug formation and this is discussed in the second section of the review. The combination of synthesis with key biological experiments is a powerful tool to define the requirements for the development of natural products as potential therapeutic agents. The studies described herein form an excellent paradigm for the study and development of other natural products. / EPSRC, Yorkshire Cancer Research, Big C Cancer Research, UCB Pharma

Page generated in 0.0927 seconds