• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Deux outils pour l'optique atomique : Jet intense d'hélium métastable et Miroir à onde évanescente exaltée

Labeyrie, Guillaume 09 January 1998 (has links) (PDF)
Ce mémoire porte sur le développement de deux outils pour réaliser des expériences d'optique atomique. Le premier de ces outils est une source qui produit un faisceau intense d'atomes d'hélium métastables. Elle est produite à partir d'un jet supersonique cryogénique d'hélium. On effectue plusieurs opérations de manipulation par laser afin d'augmenter l'intensité du jet atomique. On applique tout d'abord une mélasse optique transverse afin de collimater le faisceau atomique. Puis on décélère les atomes en utilisant la technique du ralentissement Zeeman. La faible masse de l'hélium a deux conséquences importantes sur le ralentissement: la distance nécessaire pour stopper les atomes est importante (~ 2 m), et le phénomène de diffusion transverse est particulièrement prononcé. Il faut donc recomprimer spatialement le jet atomique. Dans ce but, on utilise un dispositif original, le "concentrateur". Celui-ci permet de focaliser le jet atomique rapide en un point de son axe. Le gain d'intensité atomique au point focal est d'environ 20. La position transverse du point focal peut être balayée en appliquant un champ magnétique variable. Le deuxième outil développé est un miroir à atomes utilisant une onde évanescente. Pour pouvoir s'affranchir de l'émission spontanée pendant la réflexion, qui détruit la cohérence de l'onde de De Broglie réfléchie, il faut disposer d'une intensité lumineuse dans l'onde évanescente très importante. On utilise un système résonnant de couches minces diélectriques déposées sur un prisme pour "exalter" l'intensité de l'onde évanescente par plus de 3 ordres de grandeur. On emploie une méthode optique d'analyse de la lumière réfléchie par le prisme pour estimer le coefficient d'exaltation. Cette technique simple permet le contrôle in-situ de l'exaltation lors des expériences de réflexion d'atomes. Ce système a été utilisé pour réfléchir des atomes de rubidium avec une probabilité d'émission spontanée inférieure à 1 %.
2

Les miroirs à atomes

Westbrook, Nathalie 15 December 2000 (has links) (PDF)
Ce manuscrit présente une synthèse des travaux réalisés sur les miroirs à atomes dans le groupe d'Optique Atomique de 1991 à 2000. Il s'agit principalement d'expériences utilisant un miroir à onde évanescente pour réfléchir des atomes de rubidium. Notre objectif étant la réalisation d'éléments optiques de qualité pour l'optique atomique, nous nous sommes attachés à l'étude du maintien de la cohérence à la réflexion : réduction de l'émission spontanée grâce à l'exaltation de l'onde évanescente, influence de la rugosité de surface voire d'une « rugosité contrôlée », en incidence normale et en incidence rasante. Nous avons également mis à profit la grande sensibilité de notre dispositif pour utiliser les atomes comme nanosonde d'effets de surface : mesure de l'interaction de van der Waals, y compris grâce à une méthode interférométrique prometteuse pour la mesure des effets de retard, et caractérisation de la rugosité de surface grâce à une nouvelle méthode, basée sur des transitions Raman sélectives en vitesse.
3

Réflexion d'atomes sur un miroir à onde évanescente : Mesure de la force de van der Waals et diffraction atomique

Landragin, Arnaud 19 December 1997 (has links) (PDF)
Ce mémoire présente deux expériences réalisées à l'aide d'un miroir à atomes à onde évanescente. Le miroir utilise la force dipolaire due à l'interaction entre les atomes et une onde évanescente créée par réflexion totale interne d'un faisceau laser à l'intérieur d'un prisme. Ces deux expériences montrent que, lors de leur réflexion, les atomes constituent une sonde des champs proches de la surface du prisme. La première expérience a permis la mesure de la force de van der Waals entre un atome de rubidium dans l'état fondamental et une paroi diélectrique. Lors de la réflexion, les atomes s'approchent très près de la surface du diélectrique (~ 50 nm) et sont donc sensibles à la force attractive de van der Waals due à la présence de la paroi. L'expérience consiste à mesurer la force dipolaire nécessaire pour équilibrer la force de van der Waals. Elle montre également le rôle crucial de la force de van der Waals dans le fonctionnement du miroir à atomes, d'une part, la réduction d'un facteur trois de l'efficacité du miroir et d'autre part, la modification de la forme du potentiel réflecteur total. La seconde expérience décrit la diffraction d'atomes en incidence normale sur un miroir modulé spatialement, créé à l'aide d'une onde évanescente partiellement stationnaire. Ce processus de diffraction est lié à la modulation de phase de l'onde de de Broglie lors de la réflexion et apparaît pour une modulation très faible du potentiel. Elle est similaire à la diffraction de Raman-Nath en optique traditionnelle. L'étude des populations dans les différents ordres de diffraction en fonction de la profondeur de modulation confirme quantitativement ce processus scalaire de diffraction.
4

Réflexion et diffraction d'atomes lents par un miroir à onde évanescente

Henkel, Carsten 11 December 1996 (has links) (PDF)
Une onde évanescente lumineuse permet de réaliser un miroir à atomes, à condition que ceux-ci soient incidents avec une énergie cinétique suffisamment faible. Dans le régime de faible saturation, les atomes sont réfléchis de façon cohérente par un potentiel répulsif, le potentiel dipolaire. Nous caractérisons la réflexion d'un point de vue quantique, moyennant une solution analytique de l'équation de (\sc Schrödinger). La théorie de la diffraction d'atomes par une onde évanescente stationnaire est développée. Nous introduisons l'approximation du réseau de phase mince, valable dans le régime semi-classique, qui montre qu'en incidence normale la diffraction est efficace pour une faible modulation spatiale de l'intensité lumineuse. Pour interpréter la diffraction d'atomes en incidence rasante, il faut prendre en compte des transitions (\sc Raman) stimulées entre les sous-niveaux magnétiques. La réflexion atomique devient diffuse lorsque la rugosité de la surface du diélectrique, au-dessus de laquelle se propage l'onde évanescente, dépasse la longueur d'onde atomique incidente. La distribution angulaire des atomes diffusés donne accès à la densité spectrale de rugosité pour des échelles spatiales autour de la longueur d'onde lumineuse.

Page generated in 0.0407 seconds