Spelling suggestions: "subject:"2mission crofile"" "subject:"2mission cprofile""
1 |
Environmental impact assessment of the operation of conventional helicopters at mission levelLinares Bejarano, Carlos Andres 10 1900 (has links)
Helicopters play a unique role in modern aviation providing a varied range of benefits to society and satisfying the need for fast mobility, particularly in metropolitan areas. However, environmental concerns associated with the operation of rotorcraft have increased due to envisaged growth of air traffic. Even though helicopter operations represent a small percentage of the total greenhouse gas emissions resulting from all human activities, helicopters are categorised as a main source of local air pollution around airports and urban areas.
New rotorcraft designs, innovative aero engines and all-electrical systems are being developed in order to diminish the impact that aviation has on the global and local environment. However, advanced rotorcraft designs and breakthrough technologies might take decades to be in service. Additionally, there is a large number of polluting rotorcraft that are in use and must be progressively replaced. Therefore, in the near-term, improvements to minimise air quality degradation (around airports and metropolitan areas) may be possible from better use of existing rotorcraft by focusing on trajectory and mission profile management.
In this research project, a parametric study was carried out in order to assess the environmental impact, in terms of fuel burn and emissions, that the operation of light single-engine helicopters causes under different flight conditions. The results of this assessment were used as a basis to carry out a single and multi-objective optimisation for minimum fuel consumption and air pollutant emissions. Oxides of nitrogen, carbon monoxide and unburnt hydrocarbons were considered as trade-off parameters. In order to achieve this, a multidisciplinary assessment framework, intended to generate outputs for estimating the fuel burn and emissions during the operation of conventional helicopters, was developed. Simulink® Design Optimization™ software was incorporated into the framework in order to enhance the benefits of this tool.A baseline mission profile was proposed in order to validate the potential of mission profile management. Different case studies were carried out changing flight parameters at every segment of the baseline mission. The single and multi-objective optimisation proved that favourable reductions in fuel burn may be attainable at the expense of a slight increase of NOX emissions during the entire mission. If reductions of more than 3% in block fuel burn are to be achievable in the short term for a single helicopter, savings for air transport companies are expected to be significant if mission profile management is considered for a whole fleet of helicopters.
|
2 |
Development of a tool to analyse helicopter performance incorporating novel systemsPorras Perucho, Henry Andres 09 1900 (has links)
The aerospace industry has always been looking forward new developments
with the aim to create more environmental friendly aircraft, as well as to improve
their performance.
Over the last few years, a prominent research topic to achieve these
challenging goals has been focussed on the incorporation of more electric
Secondary Power Systems (SPS), this concept is known as More Electric
Aircraft (MEA) or All Electric Aircraft (AEA) when the internal combustion engine
is also replaced. Among others, Airbus is using Electro-hydrostatic Actuators,
(EHAs) to combine hydraulic and electric power in A320 and A340 for flight
tests since 1993. The company TTTECH applied the same concept by working
on the development of an electrical steering system for an aircraft nose landing
gear, and power source rationalization and electrical power flexibility in aircraft.
Some of the advantages stated when the MEA concept is applied are: reduction
in aircraft weight and performance penalties related to conventional SPS.
Although the More/All electric aircraft concept provided satisfactory results for
fixed-wing aircraft, research for rotary-wing aircraft is less common. This
encourages the assessment of fuel consumption and performance penalties
due to conventional and more electric SPS at conceptual level, which could
achieve similar outcomes, while finding the best configuration possible.
This project takes into account the previous research focused on fixed-wing
aircraft and studies on new technologies for SPS within Cranfield University,
this includes electrical Ice Protection System (IPS), Environmental Control
System (ECS) and Actuation System (AS). Additionally, Fuel System (FS) and
Electrical System (ES) capabilities were added, developing a generic tool able
to predict the total power requirements depending on the flight conditions. This
generic tool was then integrated with a performance model, where overall fuel
consumption is calculated for a flight mission, giving continuity and
improvement to the work already done.
Secondary systems configuration and operating characteristics for a
representative light single-engine rotary-wing aircraft were tailored, and the
systems behaviour is presented. Finally, fuel consumption was calculated for a
baseline mission profile, and compared to the fuel consumption when the
systems are not included. The baseline mission set the initial flight conditions
from which a parametric study was carried out; by varying these conditions the
parametric study determined total fuel requirements for the analysed flight
segments. An increment of up to %1.9 in the fuel consumption was found by
integrating the proposed systems to the performance model, showing the
impact produced by the systems, and the importance of studying different
technologies to minimise it.
|
3 |
Mission Profile-Based Accelerated Ageing Tests of SiC MOSFET and Si IGBT Power Modules in DC/AC Photovoltaic Inverters / Vieillissement accéléré de modules de puissance de type MOSFET SiC et IGBT Si basé sur l'analyse de profils de mission d'onduleurs photovoltaïques.Dbeiss, Mouhannad 14 March 2018 (has links)
Dans le cas des installations photovoltaïques, l’onduleur est le premier élément défaillant dont il est difficile d’anticiper la panne, et peu d’études ont été faites sur la fiabilité de ce type de convertisseur. L'objectif de cette thèse est de proposer des outils et méthodes en vue d'étudier le vieillissement des modules de puissance dans ce type d'application en se focalisant sur les phénomènes de dégradation liés à des aspects thermomécaniques. En règle générale, le vieillissement accéléré des modules de puissance est effectué dans des conditions aggravées de courant (Cyclage Actif) ou de température (Cyclage Passif) pour accélérer les processus de vieillissement. Malheureusement, en appliquant ce type de vieillissement accéléré, des mécanismes de défaillances qui ne se produisent pas dans la vraie application peuvent être observés et, inversement, d'autres mécanismes qui se produisent habituellement peuvent ne pas apparaître. La première partie de la thèse se focalise donc sur la mise en place d'une méthode de vieillissement accéléré des composants semi-conducteurs des onduleurs photovoltaïques. Cela est fait en s’appuyant sur l’analyse des profils de mission du courant efficace de sortie des onduleurs et de la température ambiante, extraits des centrales photovoltaïques situées au sud de la France sur plusieurs années. Ces profils sont utilisés pour étudier les dynamiques du courant photovoltaïque, et sont introduites dans des modèles numériques pour estimer les pertes et les variations de la température de jonction des semi-conducteurs utilisés dans les onduleurs, en utilisant l’algorithme de comptage de cycles "Rainflow". Cette méthode est ensuite mise en œuvre dans deux bancs expérimentaux. Dans le premier, les composants sous test sont des modules IGBT. Les composants sont mis en œuvre dans un banc de cyclage utilisant la méthode d'opposition et mettant en œuvre le profil de vieillissement défini précédemment. Un dispositif in-situ de suivi d'indicateurs de vieillissement (impédance thermique et résistance dynamique) est également proposé et évalué. Le deuxième banc est consacré à l'étude de modules de puissance à base de MOSFET SiC. Le vieillissement est effectué dans les mêmes conditions que pour les modules IGBT et de nombreux indicateurs électriques sont monitorés mais, cette fois ci, en extrayant les composants de l'onduleur de cyclage. Les résultats obtenus ont permis de déterminer des indicateurs de vieillissement d’IGBT et de MOSFET SiC utilisés dans un onduleur photovoltaïque / In the case of photovoltaic installations, the DC/AC inverter has the highest failure rate, and the anticipation of its breakdowns is still difficult, while few studies have been done on the reliability of this type of inverter. The aim of this PhD is to propose tools and methods to study the ageing of power modules in this type of application, by focusing on ageing phenomena related to thermo-mechanical aspects. As a general rule, the accelerated ageing of power modules is carried out under aggravated conditions of current (Active Cycling) or temperature (Passive Cycling) in order to accelerate the ageing process. Unfortunately, when applying this type of accelerated ageing tests, some failure mechanisms that do not occur in the real application could be observed, while inversely, other mechanisms that usually occur could not be recreated. The first part of the PhD focuses on the implementation of an accelerated ageing method of the semiconductor devices inside photovoltaic inverters. This is accomplished by analyzing the mission profiles of the inverter’s output current and ambient temperature, extracted over several years from photovoltaic power plants located in the south of France. These profiles are used to study photovoltaic current dynamics, and are introduced into numerical models to estimate losses and junction temperature variations of semiconductors used in inverters, using the cycle counting algorithm “Rainflow”. This method is then performed in two experimental test benches. In the first one, the devices under test are IGBT modules, where the accelerated ageing profile designed is implemented using the opposition method. Moreover, an in-situ setup for monitoring ageing indicators (thermal impedance and dynamic resistance) is also proposed and evaluated. The second bench is devoted to study the ageing of SiC MOSFET power modules. The accelerated ageing test is carried out under the same conditions as for the IGBT modules with more monitored electrical indicators, but this time by disconnecting the semiconductor devices from the inverter. The results obtained allowed to determine several potential ageing indicators of IGBTs and SiC MOSFETs used in a photovoltaic inverter
|
Page generated in 0.052 seconds