Spelling suggestions: "subject:"misturas dde especialistas"" "subject:"misturas dde specialistas""
1 |
Comitê de misturas de especialistasSILVA, Everson Veríssimo da 14 August 2013 (has links)
Submitted by Fabio Sobreira Campos da Costa (fabio.sobreira@ufpe.br) on 2017-04-05T15:39:48Z
No. of bitstreams: 2
license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5)
everson_verissimo_dissertacao.pdf: 2502424 bytes, checksum: 0f98e5de2dc7eab2b63e0c0ccd1a6703 (MD5) / Made available in DSpace on 2017-04-05T15:39:48Z (GMT). No. of bitstreams: 2
license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5)
everson_verissimo_dissertacao.pdf: 2502424 bytes, checksum: 0f98e5de2dc7eab2b63e0c0ccd1a6703 (MD5)
Previous issue date: 2013-08-14 / CAPES / Apesar dos avanços em técnicas da Aprendizagem de Máquina, muito esforço ainda
é despendido na concepção de um classificador que consiga aprender bem uma dada tarefa.
Váriasabordagenssurgiramparaatenuaresseesforçoatravésdacombinaçãodeclassificadores.
A combinação de classificadores permite que o projetista do sistema não necessite escolher
o classificador mais eficiente dentre vários, nem descartar classificadores que podem possuir
informaçãoimportantesobreatarefa. Estratégiasdecombinaçãopermitemqueváriosalgoritmos
trabalhem em conjunto a fim de melhorar a precisão de todo o sistema numa dada tarefa. O
objetivodestetrabalhoéproporummétododecombinaçãodeclassificadoresqueagregueas
vantagensdeduasabordagens: máquinasdecomitêemisturasdeespecialistas. Asmáquinasde
comitêvisamcombinarclassificadoresqueresolvempadrõesdetodooespaçodecaracterísticas.
Quandocombinados,lidammelhorcomsuperfíciesdedecisãocomplexasqueumclassificador
individualmente e são capazes de incorporar novos classificadores mesmo após o uso. Nas
MisturasdeEspecialistas,cadaumdosclassificadoreséumespecialistaemumadeterminada
áreadoespaçodecaracterísticaseemboraresolvapadrõesdetodooespaçodecaracterísticas,se
dedicaaresolverproblemasbemmaissimples,atingindoumdesempenhosuperioremrelaçãoa
umclassificadorsópararesolveroproblematodo. OmétodopropostoéchamadodeComitê
de Misturas de Especialistas e corresponde a uma máquina de comitês formada por misturas
de especialistas. Assim, o método herda a escalabilidade e a tolerância a erros das máquinas
decomitêeasimplicidadedetreinamentodasmisturasdeespecialistas. Experimentosforam
realizadosparaverificarasuperioridadedocomitêdemisturasdeespecialistassobretrêsfatores
de mudanças entre as misturas: técnicas de decomposição de tarefas, número de grupos e
características. / Despite the advance of the techniques in Machine Learning, much effort is taken to
conceiveaclassifierthatlearnswellaparticulartask. Severalapproacheshavebeenproposed
to attenuate this effort through combination of classifiers. Combination of classifiers allows
thatnotonlythemosteffectiveclassifiersbechosenamongseveral,nordiscardclassifiersthat
mayhaveimportantinformationaboutthetask. Strategiesallowthatseveralalgorithmswork
togetherinordertoimproveaccuracyofthewholesystemgivenatask. Thegoalofthiswork
is to propose a method to combine classifiers that put together advantages of two approaches:
committeemachinesandmixtureofexperts. CommitteeMachinesaimtocombineclassifiersthat
solvepatternsfromalloverthespace. Whencombined,theydealbetterwithcomplexdecision
boundaries than a single classifier and they are capable of incorporating new classifiers even
aftertheuse. Inthemixtureofexperts,eachoneoftheclassifiersisanexpertinacertainregion
ofthefeaturespaceand,althoughitsolvespatternsfromthewholefeaturespace,theclassifier
is dedicated to solve well simpler problems, reaching a better performance in comparison to
a unique classifier to solve the entire problem. Also, there is a hybrid approach, the mixture
of experts, in which each classifier solves patterns from the entire space as a committe, but
it is trained with patterns from a smaller region, similarly to modular neural networks. The
proposedmethodisentitledCommitteeofMixtureofExpertsandcorrespondstoacommittee
machineformedbymixtureofexperts. So,themethodinheritsscalabilityanderrortolerance
from committee machines and training simplicity from the mixture of experts. Experiments
weremadetoverifythesuperiorityofthecommitteeofmixturesofexpertsoverthreefactorsof
changingamongthemixtures: taskdecompositionmethods,numberofgroupsandfeatures.
|
Page generated in 0.098 seconds