• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

均勻C超圖的最大邊數

劉逸彰 Unknown Date (has links)
超級混合圖是一個 H = (X,C,D) 的表示法,其中X是代表點集合,而C和D是X的部分子集合,稱為邊。一個嚴格k種顏色可著色法指的是由X的點集對應到{1,2,…,k}的一種關係,其中C代表每一個C邊至少有兩個點同色,而D代表每一個D邊至少有兩個點不同色。C和D都有可能是空集合。假如超過(少於)k並沒有可著色的方法數,則k稱為最大著色數(最小著色數)。而H的每個邊都恰好有r個點則稱為r均勻超級混合圖。 對於r均勻C超級混合圖,如果限定了最大著色數大於等於k的話,則將會改變最大著色數的邊數。如果要找出滿足此條件的最大著色數的最大的邊數,我們主要區分成三種不同的情形來討論,分別是r比k大、r比k小和r = k。 / A mixed hypergraph is a triple H = (X, C,D), where X is the vertex set, and each of C,D is a list of subsets of X. A strict k-coloring is a onto mapping from X to {1,2, . . . , k} such that each C ∈ C contains two vertices have a common value and each D ∈ D has two vertices have distinct values. Each of C,D may be empty. The maximum(minimum) number of colors over all strict k-colorings is called the upper(lower) chromatic number of H and is denoted by χ^¯(H)(χ(H)). If a hypergraph H has no multiple edges and all its edges are of size r, then H is called an r-uniform hypergraph. We want to find the maximum number of edges for r-uniform C-hypergraph of order n with the condition χ^¯(H) ≥ k, where k is fixed. We will solve this problem according to three different cases, r < k, r = k and r > k.

Page generated in 0.0601 seconds