Spelling suggestions: "subject:"mixed grass prairie"" "subject:"mixed grass rairie""
21 |
Drivers of Plant Population Dynamics in Three Arid to Subhumid EcosystemsZachmann, Luke J. 01 May 2010 (has links)
Understanding the relative importance of density-dependent and density-independent factors in driving population dynamics is one of the oldest challenges in ecology, and may play a critical role in predicting the effects of climate change on populations. We used long-term observational data to describe patterns in plant population regulation for 57 forb and grass species from three different ecosystems (arid desert grassland, semiarid sagebrush steppe, and subhumid mixed-grass prairie). Using a hierarchical partitioning approach, we (i) quantified the relative influence of conspecific density, heterospecific composition, and climate on temporal variation in population growth rates, and (ii) asked how the relative importance of these drivers depends on site aridity, species growth form and life expectancy, and abundance and spatial patterns. The data from one of the sites in this analysis are presented in one of the chapters of this thesis. We found that density-dependence had the strongest effect on species. Climate often had a significant effect, but its strength depended on growth form. Community composition rarely explained significant variation in growth rates. The relative importance of density, composition, and climate did not vary among sites, but was related to species' life histories: compared to forbs, grasses were more sensitive to climate drivers. Abundance and spatial clustering were negatively correlated with the importance of density dependence, suggesting that local rarity is a consequence of self-limitation. Our results show that interspecific interactions play a weaker role than intraspecific interactions and climate variability in regulating plant populations. Forecasting the impacts of climate change on populations may require understanding how changes in climate variables will affect the strength of density-dependence, especially for rare species.
|
22 |
Ecological implications of grass bud bank and tiller dynamics in mixed-grass prairieOtt, Jacqueline P January 1900 (has links)
Doctor of Philosophy / Department of Biology / David C. Hartnett / Perennial grass populations propagate vegetatively via the belowground bud bank. Climate, photosynthetic pathway, and growth form impact bud production, longevity, and dormancy; leading to alterations in bud bank and tiller dynamics. Previous research in mesic C₄-dominated tallgrass prairie revealed that a C₄ grass had greater bud longevity and differing bud bank dynamics than a C₃ species. This study examined the bud bank dynamics of rhizomatous and caespitose grasses in a more arid C₃ dominated prairie to gain insights into how bud banks differ among grass species, growth forms, and environments, and the relationship between bud bank characteristics and grass architecture and growth patterns. The bud bank and tiller dynamics of four perennial grasses in the C₃-dominated northern mixed grass prairie were examined over 15 months. The C₃ caespitose and rhizomatous grasses produced similar numbers of buds per tiller and their bud longevity was [greater than or equal to] 2 years. Tiller longevity drove the turnover within the bud bank of the dominant C₃ caespitose grasses Hesperostipa comata and Nassella viridula. Their polycyclic tillers (tillers that lived for more than one year) created multi-aged bud banks. The rhizomatous C₃ grass Pascopyrum smithii also had a multi-aged bud bank because buds were able to live longer than its annual tillers. Differences between caespitose and rhizomatous C₃ grass bud banks were driven by differences in tiller and rhizome production and spatial distribution. Responses to water availability fluctuations are likely buffered by the maintenance of polycyclic tillers in the caespitose grasses and flexible timing of annual tiller recruitment in the rhizomatous grass. The C₄ rhizomatous grass Andropogon gerardii had similar phenology to populations in its tallgrass prairie range center. Despite declines in bud production per tiller and lowered flowering probability in mixed-grass prairie, A. gerardii maintained a multi-aged bud bank and a positive population growth rate via vegetative reproduction at both the center and edge of its range. Bud bank dynamics of different growth forms and photosynthetic pathways, as they offer insight into the control of grass population dynamics and production, will enhance understanding of the mechanisms by which management practices and environmental change can alter perennial grasslands.
|
23 |
Dendroclimatic Analysis of White Spruce at its Southern Limit of Distribution in the Spruce Woods Provincial Park, Manitoba, CanadaChhin, Sophan, Wang, G. Geoff, Tardif, Jacques January 2004 (has links)
We examined the radial growth - climate association of a disjunct population of white spruce (Picea glauca (Moench) Voss) at its southern limit of distribution. Forty-four white spruce tree islands were sampled over four mixed-grass prairie preserves in the Spruce Woods Provincial Park located in the forestprairie boundary of southwestern Manitoba. Reduced radial growth occurred during the 1910s, 1930s, early 1960s, and the late 1970s to the early 1980s and corresponded to periods of drought on the Canadian prairies, and the Great Plains of the United States. Correlation and response function coefficients indicated that conditions in the summer and fall of the previous year (t-1), and the summer of the current year (t) strongly influenced white spruce growth. Growth was positively correlated with August-September (t-1) and May-June-July (t) precipitation and moisture index (precipitation minus potential evapotranspiration). Radial growth was positively associated with June-July-August (t) river discharge. Growth was most correlated with maximum and mean temperature compared with minimum temperature. Precipitation and maximum temperature accounted for the greatest variation in radial growth (61%). The results suggest that white spruce growth is sensitive to climatic fluctuations because growth is restricted by moisture deficiency exacerbated by temperature-induced drought stress.
|
24 |
Selecting and evaluating native forage mixtures for the mixed grass prairie2013 April 1900 (has links)
Diverse native seed mixtures have many benefits for prairie restoration or seeded pastures. In natural grasslands, species naturally coexist with hundreds of other species in complex communities. Commercial seed mixtures rarely contain more than a small number of species, often with haphazard ratios of the component species. Thus there is no natural template for combining selected species into an optimally productive community and there is limited knowledge on how to compose a suitable species mixture. Identifying which features of a community drive increased productivity may aid in screening species and community compositions, leading to mixtures that are more specifically designed to be stable, and highly productive for the region. There is renewed interest native species as they have the potential to provide non-invasive, productive, and drought resistant rangelands that may prove more sustainable. Seven species with high agronomic potential and a broad native geographic distribution were selected for testing including: nodding brome [Bromus anomalus (Coult.)], blue bunch wheatgrass [Pseudoregneria spicata (Pursh)], western wheatgrass [Pascopyrum smithii (Rydb.)], side oats grama [Bouteloua curtipendula (Michx.)], little blue stem [Schizachyrium scoparium (Michx.)], purple prairie clover [Dalea purpurea (Vent.)], and white prairie clover [Dalea candida (Willd.)].
The early productivity and nutritional quality of these species was determined in simple mixtures in two field sites: Saskatoon and Swift Current. In the field sites the mixtures included all seven monocultures, 21 two-species mixtures and a mixture with all species. Productivity may be driven by the species richness, functional group richness, and species evenness of the community, the abundance and occurrence of particular species or functional groups, and average plant trait values within the community. Therefore, identifying the features of a community that drive increased productivity and applying them as predictive tools may aid in screening species and community compositions. Many complex mixtures of the species were planted in greenhouse experiments to determine the strongest drivers of productivity for communities of these species. The experimental approach was validated in a confirmatory experiment where optimum communities were tested. These results did not differ under a moderate drought treatment. Results were generally consistent between field and greenhouse studies. Western wheatgrass (WWG) had the highest overall plant density and the strongest effect on the forage yield of the mixtures and communities. In the field study, productivity and crude protein content were not reduced when other species were also included with WWG in the mixture. Dalea spp. did not establish as well as the other species, but had the highest crude protein concentrations. The strongest predictors of productivity were the presence and abundance of perennial C3 grasses. Increases in species richness, functional group richness, and the presence of C3s (more specifically western wheatgrass) also increased productivity, likely because of the high early relative growth rate and strong competitive ability of western wheatgrass. Overall, communities screened in the greenhouse reflected early establishment field results. The systematic approach for evaluating communities can be modified to consider enhancing other ecological functions in addition to high productivity, in other regions.
|
25 |
The effects of oil and gas development on songbirds of the mixed-grass prairie: nesting success and identification of nest predatorsBernath-Plaisted, Jacy 14 January 2016 (has links)
Over the past century, populations of North American grassland songbirds have declined sharply as a consequence of habitat destruction. Alberta’s mixed-grass prairie constitutes Canada’s largest remaining tract of native grassland. However, this region has recently undergone a rapid expansion of conventional oil and natural gas development, and few studies have documented its effects on songbird nesting success. During the 2012-2014 breeding seasons, I monitored 813 nests of grassland songbirds located at sites that varied with respect to presence/absence, distance from, and types of oil and gas infrastructure (pump jacks, screw pumps, compressor stations) and gravel roads. Nest survival was significantly lower at infrastructure sites relative to controls for both Savannah sparrow and vesper sparrow. Additionally, vesper sparrow nest density was greater within 100 m of structures. These findings suggest that habitat disturbance caused by infrastructure may result in increased frequencies of nest predation at multiple spatial scales. / February 2016
|
Page generated in 0.0447 seconds