• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

VF generátor do 4,4 GHz s obvodem ADF4350 / RF Generator up to 4.4 GHz with ADF4350

Frydrych, Jiří January 2010 (has links)
The aim of this work is design, realization, and measurement of wideband microwave generator, which is based on the ADF4350 frequency synthesizers. The generator uses the principle of mixing, for frequencies up to 2.2GHz. Higher frequencies are obtained through direct channels. The first part describes the theory of phase locked loop . The following section describes the parameters of the ADF4350 and their management. A PCB was also designed to control the generator with Atmel s AVR AT-mega32. The Generator software is written in AVR Studio in C programming language. The realized generator is housed in a stainless steel box and can be controlled using the keyboard and PC.
2

Digitally selected electronically switchable terahertz-over-fibre

Khairuzzaman, Md January 2014 (has links)
The Quantum Cascade Laser (QCL)-based terahertz-over-fibre (ToF) concept combines the strength of QCLs as ultra-wide bandwidth, high speed data sources, with the mature optical fibre technology. In this thesis, for the first time, by fusing multiple technologies, digitally selected, electronically-switchable ToF concept is experimentally demonstrated. Furthermore, the digital mode selection principle and electronic tuning mechanism provided by novel aperiodic distributed feedback (ADFB) multi-band filters are presented. For the development of electronically tunable ADFB lasers, a range of bound-to-continuum and chirped superlattice terahertz (THz) QCLs are measured across the frequency range 2.9 – 4.5 THz. The availability of these active materials allowed rapid assessments of the optimum design parameters for subsequent measurements. First, a range of photonic lattice-engineered lasers operating at 4.4 THz are characterized and key design parameters identified. Following this initial development, full electrical and spectral characterization of ADFB lasers operating at 2.9 THz are presented. The novelty of this work lies in the first-ever successful demonstration of discretely tunable QCLs, operating at six distinct THz frequencies. The ADFB technology was experimentally applied using various device geometries and gain dynamics. Toward this aim, results are presented for a Y coupled QCL architecture, showing that complex on-chip signal manipulation can be extended into the THz regime. In addition, it is demonstrated that ADFB technology provides broadband multi-channel optical filtering for the entire gain bandwidth. It is shown that discrete, purely electronic, tuning of simultaneous dual colour output can be achieved. Multi band optical filter functions derived from ADFB gratings possess highly nonlinear dispersion across the filter bandwidth and are found to modify the gain-induced, driving current-dependent continuous mode tuning. This thesis, therefore, presents a systematic experimental analysis of the dispersion engineered continuous fine-tuning in THz QCLs. In the final two chapters, the thesis presents, for the first time, transmission of tunable THz signals over standard single-mode optical fibre by up converting 2.9 THz QCL radiation via intra-cavity nonlinear mixing with an optical fibre-injected near-infrared (NIR) carrier in the 1.3 µm band. Discrete and continuous tuning technologies, as developed in chapters 3 – 5, are now successfully transferred to THz sidebands on the NIR carrier, extracted via a butt coupled single mode fibre and recorded using an optical spectrum analyzer. The major novel outcome of this thesis is the first demonstration of electronically tunable phase-matched points in a THz plasmon waveguide. The key breakthrough is the experimental confirmation of the photonic band-gap engineering of group velocity of THz signals – as both ‘fast’ and ‘slow’ switchable side bands are observed. Such novel nonlinear up-conversion of spectrally flexible THz signals may open up new possibilities for ultrafast THz telecom frameworks.
3

Large Eddy Simulation/Transported Probability Density Function Modeling of Turbulent Combustion: Model Advancement and Applications

Pei Zhang (6922148) 16 August 2019 (has links)
<div>Studies of turbulent combustion in the past mainly focus on problems with single-regime combustion. In practical combustion systems, however, combustion rarely occurs in a single regime, and different regimes of combustion can be observed in the same system. This creates a significant gap between our existing knowledge of combustion in single regime and the practical need in multi-regime combustion. In this work, we aim to extend the traditional single-regime combustion models to problems involving different regimes of combustion. Among the existing modeling methods, Transported Probability Density Function (PDF) method is attractive for its intrinsic closure of treating detailed chemical kinetics and has been demonstrated to be promising in predicting low-probability but practically important combustion events like local extinction and re-ignition. In this work, we focus on the model assessment and advancement of the Large Eddy Simulation (LES)/ PDF method in predicting turbulent multi-regime combustion.</div><div><br></div><div><div>Two combustion benchmark problems are considered for the model assessment. One is a recently designed turbulent piloted jet flame that features statistically transient processes, the Sydney turbulent pulsed piloted jet flame. A direct comparison of the predicted and measured time series of the axial velocity demonstrates a satisfactory prediction of the flow and turbulence fields of the pulsed jet flame by the employed LES/PDF modeling method. A comparison of the PLIF-OH images and the predicted OH mass fraction contours at a few selected times shows that the method captures the different combustion stages including healthy burning, significant extinction, and the re-establishment of healthy burning, in the statistically transient process. The temporal history of the conditional PDF of OH mass fraction/temperature at around stoichiometric conditions at different axial locations suggests that the method predicts the extinction and re-establishment timings accurately at upstream locations but less accurately at downstream locations with a delay of burning reestablishment. The other test case is a unified series of existing turbulent piloted flames. To facilitate model assessment across different combustion regimes, we develop a model validation framework by unifying several existing pilot stabilized turbulent jet flames in different combustion regimes. The characteristic similarity and difference of the employed piloted flames are examined, including the Sydney piloted flames L, B, and M, the Sandia piloted flames D, E, and F, a series of piloted premixed Bunsen flames, and the Sydney/Sandia inhomogeneous inlet piloted jet flames. Proper parameterization and a regime diagram are introduced to characterize the pilot stabilized flames covering non-premixed, partially premixed, and premixed flames. A preliminary model assessment is carried out to examine the simultaneous model performance of the LES/PDF method for the piloted jet flames across different combustion regimes.</div><div><br></div><div>With the assessment work in the above two test cases, it is found that the LES/PDF method can predict the statistically transient combustion and multi-regime combustion reasonably well but some modeling limitations are also identified. Thus, further model advancement is needed for the LES/PDF method. In this work, we focus on two model advancement studies related to the molecular diffusion and sub-filter scale mixing processes in turbulent combustion. The first study is to deal with differential molecular diffusion (DMD) among different species. The importance of theDMD effects on combustion has been found in many applications. However, in most previous combustion models equal molecular diffusivity is assumed. To incorporate the DMD effects accurately, we develop a model called Variance Consistent Mean Shift (VCMS) model. The second model advancement focuses on the sub-filter scale mixing in high-Karlovitz (Ka) number turbulent combustion. We analyze the DNS data of a Sandia high-Ka premixed jet flame to gain insights into the modeling of sub-filter scale mixing. A sub-filter scale mixing time scale is analyzed with respect to the filter size to examine the validity of a power-law scaling model for the mixing time scale.</div></div>

Page generated in 0.0701 seconds