• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Catalytic Wet Air Oxidation of 2,4-Dichlorophenol Solutions with Addition of Mn/£^-Al2O3

Yen, Chun-hsiang 18 July 2001 (has links)
The 2,4-Dichlorophenol (2,4-DCP) solution (400 mg L¡Ð1) was treated by a wet air oxidation (WAO) process at temperatures of 393¡Ð453 K under a total pressure of 3.0 MPa using either Mn /£^-Al2O3 or Mn-Ce /£^-Al2O3 composite oxide as a catalyst. A COD reduction was found only 19.2% within 60 min if the WAO process was performed in a semi-batch type reactor without any catalyst addition; however, a higher COD removal of 69.4% or 71.4% was achieved when the Mn /£^-Al2O3 or Mn-Ce /£^-Al2O3 oxide was applied in the WAO process, respectively. A catalytic wet air oxidation (CWAO) of 2,4-DCP solution using the Mn-Ce /£^-Al2O3 oxide as a catalyst was conducted in another up-flowing fixed-bed reactor at 433 K under a pressure of 3.0 MPa in a space velocity of 4.0 hr¡Ð1. The COD reduction of the solution of 2,4-DCP was found above 61.4%. Also, both BOD5 and COD values in the effluent from the CWAO process was examined, and the BOD5/COD ratio was about 0.64. On the other hand, it is possible to treat the 2,4-DCP solution (¡Õ400 mg L¡Ð1) to meet the discharging regulation standard (COD¡Õ100 mg L¡Ð1) began in 1998 at Taiwan using a CWAO run and followed by an activated sludge treatment unit. The Ea values of the CWAO of 2,4-DCP using the Mn /£^-Al2O3 oxide as a catalyst were 20.77 KJ mol¡Ð1 and 23.99 KJ mol¡Ð1, respectively, for the first-stage and the second-stage reaction, respectively. In addition, the Ea values of the CWAO of 2,4-DCP over the Mn-Ce /£^-Al2O3 oxide were 14.77 KJ mol¡Ð1 and 23.30 KJ mol¡Ð1, respectively, for the first-stage and the second-stage reaction. Obviously, the Mn-Ce /£^-Al2O3 oxide does a better job in reducing the activation energy of the CWAO of 2,4-DCP than the Mn /£^-Al2O3 oxide does. Unfortunately, 2,4-DCP is hardly decomposed to become a low molecule weight carbon acids by the WAO run undergoing at 493 K without any catalyst addition. Several intermediates, such as 2-chlorophenol, phenol, catechol, oxalic acid, and formic acid, of the effluent from the CWAO of 2,4-DCP run over the Mn-Ce /£^-Al2O3 oxide were determined with a high-performance liquid chromatography.

Page generated in 0.0454 seconds