• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Adaptive Grid-Based Data Collection Scheme for Multiple Mobile Sinks in Wireless Sensor Networks

Liu, Wei-chang 28 June 2007 (has links)
Wireless Sensor Network (WSN) has become a popular wireless technology in recent years. In WSN, a large number of sensors are used to collect data and forward data hop-by-hop to a sink. Due to the unbalancing of traffic load, some grid nodes may consume more energy and their packet loss ratio may be increased as well. In order to improve above-mentioned shortcomings, in this Thesis, we propose an Adaptive Grid-based Data Collection (AGDC) scheme. Because a mobile sink may move, it is possible the traffic load of primary grid nodes can be changed in WSN. According to the distribution of traffic load, the AGDC can adjust transmission range to allocate one or more temporary grid nodes between two primary grid nodes. Through the added temporary grid nodes, traffic load is evenly dispersed among different grid nodes. We allow the primary grid nodes to use smaller transmission power to save energy and allow the temporary grid nodes to buffer data to reduce packet loss ratio. For the purpose of evaluation, we perform simulation on NS-2. With the proposed AGDC scheme, the transmission range of a primary grid node can be set to an appropriate distance to reduce power consumption and packet loss ratio. Since the packet loss ratio is reduced, the throughput of entire WSN is increased.
2

Modeling Crowd Mobility and Communication in Wireless Networks

Solmaz, Gurkan 01 January 2015 (has links)
This dissertation presents contributions to the fields of mobility modeling, wireless sensor networks (WSNs) with mobile sinks, and opportunistic communication in theme parks. The two main directions of our contributions are human mobility models and strategies for the mobile sink positioning and communication in wireless networks. The first direction of the dissertation is related to human mobility modeling. Modeling the movement of human subjects is important to improve the performance of wireless networks with human participants and the validation of such networks through simulations. The movements in areas such as theme parks follow specific patterns that are not taken into consideration by the general purpose mobility models. We develop two types of mobility models of theme park visitors. The first model represents the typical movement of visitors as they are visiting various attractions and landmarks of the park. The second model represents the movement of the visitors as they aim to evacuate the park after a natural or man-made disaster. The second direction focuses on the movement patterns of mobile sinks and their communication in responding to various events and incidents within the theme park. When an event occurs, the system needs to determine which mobile sink will respond to the event and its trajectory. The overall objective is to optimize the event coverage by minimizing the time needed for the chosen mobile sink to reach the incident area. We extend this work by considering the positioning problem of mobile sinks and preservation of the connected topology. We propose a new variant of p-center problem for optimal placement and communication of the mobile sinks. We provide a solution to this problem through collaborative event coverage of the WSNs with mobile sinks. Finally, we develop a network model with opportunistic communication for tracking the evacuation of theme park visitors during disasters. This model involves people with smartphones that store and carry messages. The mobile sinks are responsible for communicating with the smartphones and reaching out to the regions of the emergent events.
3

Reliable and time-constrained communication in wireless sensor networks

Yang, Fei 25 March 2011 (has links) (PDF)
Wireless Sensor Networks (WSNs) are composed of a large number of battery-powered sensor nodes that have the ability to sense the physical environment, compute the obtained information and communicate using the radio interfaces. Because sensor nodes are generally deployed on a large and wild area, they are powered by embedded battery. And it is difficult to change or recharge the battery, thus to reduce the energy consumption when sensors and protocols are designed is very important and can extend the lifetime of WSNs. So sensor nodes transmit packets with a lower transmission power (e.g. OdBm). With this transmission power, a packet can only be transmitted dozens of meters away. Therefore, when a sensor detects an event, a packet is sent in a multi-hop, ad-hoc manner (without fixed infrastructure and each sensor is able to relay the packet) to the sink (specific node which gathers information and reacts to the network situation). In this thesis, we first give an elaborate state of the art of WSNs. Then the impacts of duty-cycle and unreliable links or the performances of routing layer are analyzed. Based on the analytical results, we then propose three new simple yet effective methods to construct virtual coordinates under unreliable links in WSNs. By further taking the duty-cycle and real-time constraints into consideration we propose two cross-layer forwarding protocols which can have a greater delivery ratio and satisfy the deadline requirements. In order to have protocols for the WSNs that have dynamic topology, we then propose a robust forwarding protocol which can adapt its parameters when the topology changes. At last, we conclude this thesis and give some perspectives.
4

Reliable and time-constrained communication in wireless sensor networks / Communications fiables et contraintes en temps dans les réseaux de capteurs sans fils

Yang, Fei 25 March 2011 (has links)
Les réseaux de capteurs sans fils (WSN) sont composés d'un très grand nombre de capteurs, capables de mesurer des paramètres physiques de l'environnement, de mettre en forme l'information obtenue et de la communiquer aux autres capteurs grâce à une interface radio. Les capteurs étant en général déployés sur de très grandes étendues géographiques, l'énergie nécessaire pour les faire fonctionner est fournie par une batterie embarquée sur le capteur. En général, il est difficile de recharger les batteries une fois les capteurs déployés. Economiser l'énergie est donc une préoccupation constante lors de la conception des capteurs et des protocoles de communication utilisés, de manière à prolonger la durée de vie du réseau. Dans ce but, les capteurs transmettent leurs données avec des puissances d'émission très faibles. Avec de telles puissances d'émission, un message ne peut être transmis que sur quelques dizaine de mètres. De ce fait, lorsqu'un capteur détecte un événement, le message est transmis en mode ad-hoc multisauts jusqu'au puits, un nœud spécifique du réseau, qui récolte toutes les informations et est capable de réagir de manière adéquate. Dans cette thèse, nous donnons d'abord un état de l'art avancé sur les WSN. Ensuite nous analysons l'impact du cycle d'endormissement et des liens non fiable sur la couche de routage. A partir des résultats analytiques, nous proposons trois méthodes originales, simples et efficaces pour construire des coordonnées virtuelles en prenant en compte la non fiabilité des liens dans les WSN. En prenant en compte le cycle d'endormissement et les contraintes temps-réel, nous proposons deux protocoles cross-layer qui ont de bons taux de livraison et qui permettent de respecter des contraintes temporelles. Pour pallier à la dynamicité des réseaux de capteurs sans fil, nous proposons un protocole de routage robuste qui adapte ses paramètres quand la topologie change. Enfin, nous concluons et donnons quelques perspectives. / Wireless Sensor Networks (WSNs) are composed of a large number of battery-powered sensor nodes that have the ability to sense the physical environment, compute the obtained information and communicate using the radio interfaces. Because sensor nodes are generally deployed on a large and wild area, they are powered by embedded battery. And it is difficult to change or recharge the battery, thus to reduce the energy consumption when sensors and protocols are designed is very important and can extend the lifetime of WSNs. So sensor nodes transmit packets with a lower transmission power (e.g. OdBm). With this transmission power, a packet can only be transmitted dozens of meters away. Therefore, when a sensor detects an event, a packet is sent in a multi-hop, ad-hoc manner (without fixed infrastructure and each sensor is able to relay the packet) to the sink (specific node which gathers information and reacts to the network situation). In this thesis, we first give an elaborate state of the art of WSNs. Then the impacts of duty-cycle and unreliable links or the performances of routing layer are analyzed. Based on the analytical results, we then propose three new simple yet effective methods to construct virtual coordinates under unreliable links in WSNs. By further taking the duty-cycle and real-time constraints into consideration we propose two cross-layer forwarding protocols which can have a greater delivery ratio and satisfy the deadline requirements. In order to have protocols for the WSNs that have dynamic topology, we then propose a robust forwarding protocol which can adapt its parameters when the topology changes. At last, we conclude this thesis and give some perspectives.

Page generated in 0.3079 seconds