• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 1
  • Tagged with
  • 13
  • 13
  • 13
  • 13
  • 6
  • 6
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mobile based localisation for assisting disabled people.

Samoita, Dominic Ondieki. January 2010 (has links)
M. Tech.: Electrical Engineering. / The purpose of this research was to design a low cost mobile positioning system based on Global System for Mobile communication network. The positioning system utilises Timing Advance, Signal Strength, a calibrated propagation system based on per -cell modelling and field measurements data to calculate the mobile position. Clutter and terrain features such as trees and buildings were modelled to closely represent the real environment to enhance the accuracy of the Signal Strength prediction. The key pillar of this approach is its ability to establish the contribution of each of the localised features to the propagation model. Based on the magnitude of the contribution of each feature, a conclusive correction factor for each feature was obtained. The proposed system is evaluated using field measurements collected from a Global System for Mobile communication network in diverse geographic locations in the outskirts of Pretoria. A fair correlation was established between field measurements and propagation model predictions.
2

Development of an augmenting navigational cognition system

Yang, Ying. Chapman, Richard O. January 2005 (has links) (PDF)
Thesis(M.S.)--Auburn University, 2005. / Abstract. Includes bibliographic references (p.73-80).
3

Indoor localization using Wi-Fi fingerprinting

Unknown Date (has links)
Nowadays the widespread availability of wireless networks has created an interest in using them for other purposes, such as localization of mobile devices in indoor environments because of the lack of GPS signal reception indoors. Indoor localization has received great interest recently for the many context-aware applications it could make possible. We designed and implemented an indoor localization platform for Wi-Fi nodes (such as smartphones and laptops) that identifies the building name, floor number, and room number where the user is located based on a Wi-Fi access point signal fingerprint pattern matching. We designed and evaluated a new machine learning algorithm, KRedpin, and developed a new web-services architecture for indoor localization based on J2EE technology with the Apache Tomcat web server for managing Wi-Fi signal data from the FAU WLAN. The prototype localization client application runs on Android cellphones and operates in the East Engineering building at FAU. More sophisticated classifiers have also been used to improve the localization accuracy using the Weka data mining tool. / Includes bibliography. / Thesis (M.S.)--Florida Atlantic University, 2013.
4

Improving mobile localization in wireless networks. / CUHK electronic theses & dissertations collection

January 2010 (has links)
Because of its potential applications, mobile localization in wireless networks has attracted much attention recently. It is essential that a mobile user should be able to know its location anytime and anywhere. In practice, however, it is not always possible to obtain an accurate location of the mobile user; the presence of non-line-of-sight (NLOS) radio signal propagation and malicious beacons could cause considerable errors in localization. Therefore, NLOS identification and the detection of malicious beacons are important issues in localization. Existing NLOS identification methods usually assume that localization involving the use of NLOS radio signals cannot be performed in a consistent manner. However, the validity of the foregoing assumption has not been properly investigated. As a result, it is questionable whether these methods can be used to identify NLOS effectively. Existing malicious beacon identification methods require the cooperation of several detecting nodes for the verification of a location claim from a target node. They all suffer from one or both of the drawbacks: (i) not able to cope with a sparse network situation, and (ii) their design being based on a particular distance measurement technique. Moreover, even if NLOS propagation and malicious beacons can be identified, the following problem could arise: if the localization systems do not use the beacons involving NLOS propagation and the malicious beacons, they may not be able to locate a mobile user because of not having enough beacons. / In the first part of this thesis, we present a theoretical analysis of localization using NLOS radio signals, and show that the above-mentioned assumption would no longer be valid when the mobile user is located outside the convex hull of the underlying beacons. As a result, existing NLOS identification methods, as well as many localization approaches, could perform poorly. Extensive experiments on different wireless networks demonstrate that NLOS in localization and the localization error caused by NLOS have been greatly underestimated in previous studies. In the second part, we propose a general location verification scheme to identify malicious beacons. It employs a node-to-node approach for location estimation, and could use different measurement techniques; moreover, it supports secure location verification in sparse networks. The proposed verification scheme has been shown able to achieve satisfactory performance via extensive real world GPS-based wireless sensor network experiments. In the third part, we present a mobility enhanced localization (MEL) scheme. By introducing the user's mobility information into the localization process, the proposed MEL can work in the area where current mobile localization systems cannot locate a mobile user for not having enough beacons. Extensive real world GPS experimental results demonstrate the superiority of the proposed MEL scheme. With the proposed solutions to the above problems, we could obtain improved mobile localization. / Liu, Dawei. / Adviser: Moon-Chuen Lee. / Source: Dissertation Abstracts International, Volume: 73-03, Section: B, page: . / Thesis (Ph.D.)--Chinese University of Hong Kong, 2010. / Includes bibliographical references (leaves 90-97). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [201-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese.
5

An analysis of the domestic power line infrastructure to support indoor real-time localization

Stuntebeck, Erich Peter 30 June 2010 (has links)
The vision of ubiquitous computing is to seamlessly integrate information processing into everyday objects and activities. Part of this integration is an awareness on the part of a system of its user's context. Context can be composed of several variables --- such as a user's current activity, goals, or state of mind --- but location (both past and present) is almost always a key component. Determining location outdoors has become quite simple and pervasive with today's low-cost handheld Global Positioning System (GPS) receivers. Technologies enabling the location of people and objects to be determined while indoors, however, have lagged due to their extensive infrastructure requirements and associated cost. Just as GPS receivers utilize radio signals from satellites to triangulate their position, an indoor real-time locating system (RTLS) must also make use of some feature of the environment to determine the location of mobile units. Since the signal from GPS satellites is not sufficiently strong to penetrate the structure of a building, indoor RTLS systems must either use some existing feature of the environment or generate a new one. This typically requires a large amount of infrastructure (e.g. specialized RF receivers, additional 802.11 access points, RFID readers, etc.) to be deployed, making indoor RTLSs impractical for the home. While numerous techniques have been proposed for locating people and objects within a building, none of these has yet proven to be a viable option in terms of cost, complexity of installation, and accuracy for home users. This dissertation builds on work by Patel et al. in which the home power lines are used to radiate a low-frequency wireless RF signal that mobile tags use for location fingerprinting. Leveraging the existing power line permits this system to operate on far less additional infrastructure than existing solutions such as cellular (GSM and CDMA), 802.11b/g, and FM radio based systems. The contributions of this research to indoor power line-based RTLS are threefold. First, I examine the temporal stability of a power line based RTLS system's output. Fingerprinting-based RTLS relies upon some feature of the environment, such as the amplitude of an RF signal, to be stable over time at a particular location (temporal stability), but to change in space (spatial differentiability). I show that a power line-based RTLS can be made much more resistant to temporal instability in individual fingerprint components by utilizing a wide-band RF fingerprint. Next, I directly compare the temporal stability of the raw features used by various fingerprinting based indoor RTLSs, such as cellular, 802.11b/g, and FM radio. In doing so, I show that a power line based indoor RTLS has an inherent advantage in temporal stability over these other methods. Finally, I characterize the power line as a receiving antenna for low-powered wireless devices within the home, thus allowing the power line to not only transmit the RF signals used for fingerprinting, but also to receive the sensed features reported by location tags. Here, I show that the powerline is a viable receiver for these devices and that the globally available 27.12 MHz ISM band is a good choice of frequency for communications.
6

A test of differential GPS correction methods at Fort Huachuca, Arizona

Swanson, Joshua G. Cowell, Charles Mark, January 2009 (has links)
Title from PDF of title page (University of Missouri--Columbia, viewed on Feb 19, 2010). The entire thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file; a non-technical public abstract appears in the public.pdf file. Thesis advisor: Dr. C. Mark Cowell. Includes bibliographical references.
7

Destination descriptions in urban environments /

Tomko, Martin. January 2007 (has links)
Thesis (Ph.D.)--University of Melbourne, Dept. of Geomatics, 2007. / Typescript. Includes bibliographical references (leaves 161-173).
8

Mobile web resource tracking during a disaster or crisis situation /

Douangboupha, Phavanhna. January 2009 (has links)
Thesis (M.S.)--Rochester Institute of Technology, 2009. / Typescript. Includes bibliographical references (leaves 70-83).
9

Real-time detection of attendance at a venue using mobile devices

Sagboze, Konzi Olivier January 2017 (has links)
Thesis (MTech (Information Technology))--Cape Peninsula University of Technology, 2017. / The implosion of the mobile phones, mobile applications and social media in recent years has triggered a great interest for more dedicated user-generated contents. Mobile users being the focal point, these modern virtual platforms depend on and live for collecting, structuring and manipulating the very fine-grained details about users' day-to-day activities. Since every human activity takes place in a geographical context, location information ranks high among the set of data to gather about user's daily life. User's specific location details can help filter content to serve and retrieve from them. Therefore, location-based services have been developed and successfully integrated into most virtual platforms in the quest for these precious data. However, location-based services do not fulfil all requirements. They depend on a range of positioning systems which show numerous limitations. None of the existing positioning systems is perfectly accurate. Today, it is therefore difficult to pinpoint a user in a venue using location-based services. Nevertheless, with the set of existing technology and techniques, it is possible to estimate and track users’ whereabouts in real-time. Providing the best possible estimation of user's position within a given venue can help achieve better user engagement. Depending on the gap of accuracy, the end result may actually match the outcome expected from perfectly accurate positioning systems. In this work, the focus is to develop a prototype positioning system which provides the best estimation of user's position in real-time in relation to a targeted venue or location. Through a series of research and comparison study, the most suited technology and techniques are objectively selected to build the intended prototype. The challenge of indoor positioning is also addressed in this work – bearing in mind the fact that this prototype is set to work accurately and efficiently in any geographical location and structure. The prototype is evaluated according to a set of predefined standard metrics, and theories are extracted to grow knowledge about this trending topic.
10

A near field communication framework for indoor navigation : design and deployment considerations

Sakpere, Wilson Evuarherhe January 2015 (has links)
Thesis (MTech (Information Technology))--Cape Peninsula University of Technology, 2015. / Navigation systems are known to provide time and location information for easy and accurate navigation in a specified environment. While Global Positioning System (GPS) has recorded a considerable success for navigating outdoors, the absence of GPS indoors has made orientation in an indoor environment challenging. Furthermore, existing technologies and methods of indoor positioning and navigation, such as WLAN, Bluetooth and Infrared, have been complex, inaccurate, expensive and challenging to implement; thereby limiting the usability of these technologies in less developed countries. This limitation of navigation services makes it difficult and time consuming to locate a destination in indoor and closed spaces. Hence, recent works with Near Field Communication (NFC) has kindled interest in positioning and navigation. While navigating, users in less developed nations face several challenges, such as infrastructure complexity, high-cost solution, inaccuracy and usability. However, this research focuses on providing interventions to alleviate usability challenges, in order to strengthen the overall accuracy and the navigation effectiveness in stringent environments through the experiential manipulation of technical attributes of the positioning and navigation system in indoor environments. Therefore, this study adopted the realist ontology and the positivist epistemological approach. It followed a quantitative and experimental method of empirical enquiry, and software engineering and synthesis research methods. The study entails three implementation processes, namely map generation, positioning framework and navigation service using a prototype mobile navigation application that uses the NFC technology. It used open-source software and hardware engineering tools, instruments and technologies, such as Ubuntu Linux, Android Software Development Kit, Arduino, NFC APIs and PandaBoard. The data was collected and the findings evaluated in three stages: pre-test, experiment and post-test.

Page generated in 0.151 seconds