• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 5
  • 5
  • 5
  • 3
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Contribution à la navigation de robots mobiles : approche par modèle direct et commande prédictive / Contribution to mobile robots navigation : direct model and model based control approach

Morette, Nicolas 18 December 2009 (has links)
L’autonomie d’un robot mobile autonome requiert la réalisation coordonnée de tâches de commande et de perception de l’environnement. Parmi celles-ci, la navigation joue un rôle de pivot dans l’interaction du robot avec son terrain d’évolution. Elle consiste en la détermination de trajectoires réalisables par le robot pour suivre un chemin préétabli, tout en assurant la non collision avec les obstacles, mobiles ou fixes. Pour effectuer cette tâche, notre approche s’appuie sur le modèle cinématique direct du véhicule pour générer des trajectoires admissibles par le robot. En premier lieu, une trajectoire de référence est construite à partir du chemin à suivre. Le problème de navigation est alors modélisé sous la forme d’un problème d’optimisation sous contraintes dont la fonction coût quantifie l’écart entre la trajectoire prédite du robot et la trajectoire de référence. Les obstacles sont intégrés sous forme de contraintes en pénalisant le critère, et sa minimisation détermine la commande optimale à appliquer. Cette navigation par commande prédictive nous permet d’anticiper les mouvements de contournement d’obstacles sur l’horizon de prédiction choisi, tout en gardant une certaine réactivité vis-à-vis de la dynamique des obstacles et du robot. En outre, l’utilisation de familles de trajectoires paramétrées permet de maitriser le comportement du véhicule. / Autonomous robots have to perform both control and perception tasks coordinately. Among these ones, the navigation task is a key in the interaction between the robot and its environment. It consists of determining the trajectories which the robot can follow in order to negotiate correctly around static and dynamic obstacles, assuming that it is programmed to map out its environment and situate itself within that environment. To perform this task, our approach rests on the direct kinematics model of the robot to generate admissible trajectories for the robot. Firstly, a reference trajectory is computed from the reference path provided by a path planer. Then the navigation task is modelized as an optimization under constraints problem, whose the cost function quantify the gap between the reference trajectory and the predicted trajectory of the robot. The obstacles are taken into account as constraints, and the minimization of the resulting cost function determinate the optimal control for the robot on a prediction horizon. This predictive navigation allows the robot to anticipate bi-pass movements on the chosen prediction horizon, Moreover, the behaviour of the robot is mastered by the use of parametered trajectories families.
2

Sistema de navegação para veiculos roboticos aereos baseado na observação e mapeamento do ambiente / Navigation system for aerial robotic vehicles based on the boservation and mapping of the environment at the School of Electrical and Computer Engineering

Castro, Cesar Dantas de 24 April 2007 (has links)
Orientadores: Paulo Augusto Valente Ferreira, Alessandro Correa Victorino, Samuel Siqueira Bueno / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Eletrica e de Computação / Made available in DSpace on 2018-08-08T18:02:11Z (GMT). No. of bitstreams: 1 Castro_CesarDantasde_M.pdf: 3031758 bytes, checksum: 02179aa87aa18297b9b19bef7fb5b647 (MD5) Previous issue date: 2007 / Resumo: Este trabalho disserta sobre o desenvolvimento e a implementação de um sistema de localização e mapeamento simultâneos (SLAM) para um veículo robótico aéreo. Utilizando tal sistema, um robô que sobrevoe determinada área, até então desconhecida, deve ser capaz de conhecer sua postura no ambiente e mapeá-lo, sem o auxílio de mapas ou outras informações externas. Para alcançar este objetivo, o sistema recebe informações de uma unidade de medição inercial e de uma câmera, que observa características do ambiente e, indiretamente, a posição e a atitude do robô. Para fundir as informações dos dois conjuntos sensoriais embarcados, é utilizada uma arquitetura baseada no filtro de Kalman estendido, que atua como um estimador tanto da localização do dirigível quanto do mapa. Este sistema representa um primeiro passo em direção a uma solução de SLAM em seis graus de liberdade para o Projeto AURORA, que visa o desenvolvimento de tecnologia em robótica aérea. Desta forma, a abordagem proposta é validada em um ambiente de simulação composto de sensores virtuais e do simulador dinâmico do projeto AURORA. Os resultados apresentados mostram a eficácia da metodologia / Abstract: This work addresses the development and implementation of a simultaneous localization and mapping (SLAM) system for aerial robotic vehicles. Through this system, a robot flying over an unknown region must be capable of detecting its position accurately and, at the same time, constructing a map of the environment without the help of maps or any other external information. To reach that goal, the system receives input data from an inertial measurement unit and a single camera, which observes features in the environment and, indirectly, the robot¿s position and attitude. The data from both onboard sensors are then fused using an architecture based on an extended Kalman filter, which acts as an estimator of the robot pose and the map. This system represents a first step towards a six degrees of freedom SLAM solution for Project AURORA, whose goal is the development of technology on aerial robotics. As such, the proposed methodology is validated in a simulation environment composed of virtual sensors and the aerial platform simulator of the AURORA project based on a realistic dynamic model. The reported results show the efficiency of the approach / Mestrado / Automação / Mestre em Engenharia Elétrica
3

Planning for mobile robot localization using architectural design features on a hierarchical POMDP approach = Planejamento para localização de robôs móveis utilizando padrões arquitetônicos em um modelo hierárquico de POMDP / Planejamento para localização de robôs móveis utilizando padrões arquitetônicos em um modelo hierárquico de POMDP

Pinheiro, Paulo Gurgel, 1983- 16 August 2013 (has links)
Orientador: Jacques Wainer / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Computação / Made available in DSpace on 2018-08-24T02:06:24Z (GMT). No. of bitstreams: 1 Pinheiro_PauloGurgel_D.pdf: 41476694 bytes, checksum: f3d5b1e2aa32aa6f00ef7ac689a261e2 (MD5) Previous issue date: 2013 / Resumo: Localização de robôs móveis é uma das áreas mais exploradas da robótica devido a sua importância para a resolução de problemas, como: navegação, mapeamento e SLAM. Muitos trabalhos apresentaram soluções envolvendo cooperação, comunicação e exploração do ambiente, onde em geral a localização é obtida através de ações randômicas ou puramente orientadas pelo estado de crença. Nesta tese, é apresentado um modelo de planejamento para localização utilizando POMDP e Localização de Markov, que indicaria a melhor ação que o robô deve efetuar em cada momento, com o objetivo de diminuir a quantidade de passos. O foco está principalmente em: i) problemas de difícil localização: onde não há landmark ou informação extra no ambiente que auxilie o robô, ii) situações de performance crítica: onde o robô deve evitar passos randômicos e o gasto de energia e, por último, iii) situações com múltiplas missões. Sabendo que um robô é projetado para desempenhar missões, será proposto, neste trabalho, um modelo onde essas missões são consideradas em paralelo com a localização. Planejar para cenários com múltiplos ambientes é um desafio devido a grande quantidade de estados que deve ser tratada. Para esse tipo de problema, será apresentado um modelo de compressão de mapas que utiliza padrões arquiteturais e de design, como: quantidade de portas, paredes ou área total de um ambiente, para condensar informações que possam ser redundantes. O modelo baseia-se na similaridade das características de desing para agrupar ambientes similares e combiná-los, gerando um único mapa representante que possui uma quantidade de estados menor que a soma total de todos os estados dos ambientes do grupo. Planos em POMDP são gerados apenas para os representantes e não para todo o mapa. Finalmente, será apresentado o modelo hierárquico onde a localização é executada em duas camadas. Na camada superior, o robô utiliza os planos POMDP e os mapas compactos para estimar a grossa estimativa de sua localização e, na camada inferior, utiliza POMDP ou Localização de Markov para a obtenção da postura mais precisa. O modelo hierárquico foi demonstrado com experimentos utilizando o simulador V-REP, e o robô Pioneer 3-DX. Resultados comparativos mostraram que o robô utilizando o modelo proposto, foi capaz de realizar o processo de localização em cenários com múltiplos ambientes e cumprir a missão, mantendo a precisão com uma significativa redução na quantidade de passos efetuados / Abstract: Mobile Robot localization is one of the most explored areas in robotics due to its importance for solving problems, such as navigation, mapping and SLAM. In this work, we are interested in solving global localization problems, where the initial pose of the robot is completely unknown. Several works have proposed solutions for localization focusing on robot cooperation, communication or environment exploration, where the robot's pose is often found by a certain amount of random actions or state belief oriented actions. In order to decrease the total steps performed, we will introduce a model of planning for localization using POMDPs and Markov Localization that indicates the optimal action to be taken by the robot for each decision time. Our focus is on i) hard localization problems, where there are no special landmarks or extra features over the environment to help the robot, ii) critical performance situation, where the robot is required to avoid random actions and the waste of energy roaming over the environment, and iii) multiple missions situations. Aware the robot is designed to perform missions, we have proposed a model that runs missions and the localization process, simultaneously. Also, since the robot can have different missions, the model computes the planning for localization as an offline process, but loading the missions at runtime. Planning for multiple environments is a challenge due to the amount of states we must consider. Thus, we also proposed a solution to compress the original map, creating a smaller topological representation that is easier and cheaper to get plans done. The map compression takes advantage of the similarity of rooms found especially in offices and residential environments. Similar rooms have similar architectural design features that can be shared. To deal with the compressed map, we proposed a hierarchical approach that uses light POMDP plans and the compressed map on the higher layer to find the gross pose, and on the lower layer, decomposed maps to find the precise pose. We have demonstrated the hierarchical approach with the map compression using both V-REP Simulator and a Pioneer 3-DX robot. Comparing to other active localization models, the results show that our approach allowed the robot to perform both localization and the mission in a multiple room environment with a significant reduction on the number of steps while keeping the pose accuracy / Doutorado / Ciência da Computação / Doutor em Ciência da Computação
4

Arquitetura de subsunção baseada em objetivo de controle principal / Subsumption architecture based on main control objective

Santos, Phillipe Cardoso 17 February 2017 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / A very important aspect in robotics is the decision making and execution the system uses to achieve its goals. In literature, many different approaches can be found about how the robot must behave in different situations in order to have a more robust system. Subsumption architecture is one of the most used and referenced in the area. In this architecture, the global task is divided into subtasks which are performed by behaviors organized in hierarchical layers. However, little research has been done regarding the stability analysis of this architecture. Behavioral changes imply in controller switching, which can lead the system to instability even in cases where all controllers are stable. In this work, a subsumption architecture with guaranteed stability is presented based on the theory of switched systems with main control objective. In addition, a formalism capable of allowing behaviors modeling in a simple and fast way is proposed based on the theory of discrete events systems. Tests in real environments were performed with the Pioneer P3-DX robot and obtained results demonstrate the proposed approach effectiveness. / Um aspecto muito importante na robótica é a tomada de decisão e execução que o sistema utiliza para alcançar seus objetivos. Na literatura, existem vários trabalhos diferentes para abordar como o robô deve se comportar diante de várias situações diferentes a fim de trazer uma maior robustez ao sistema, sendo a arquitetura de subsunção uma das mais utilizadas e referenciadas na área. Nesta arquitetura, a tarefa global é dividida em subtarefas que são executadas por comportamentos organizados em camadas de forma hierárquica. No entanto, pouco se pesquisa no que diz respeito a análise de estabilidade desta arquitetura, sendo que as mudanças de comportamento implicam em chaveamento de controladores, que por sua vez podem levar o sistema a instabilidade mesmo em casos em que todos os controladores sejam estáveis. Desta forma, neste trabalho é apresentada uma arquitetura de subsunção com prova de estabilidade garantida com base na teoria de controle chaveado com objetivo de controle principal. Além disso, um formalismo capaz de permitir a modelagem dos comportamentos de forma simples e rápida é proposto com base na teoria de sistemas a eventos discretos. Testes em ambientes reais foram realizados com o robô Pioneer P3-DX e os resultados obtidos comprovam a eficácia da abordagem proposta.
5

Robot navigation in sensor space

Keeratipranon, Narongdech January 2009 (has links)
This thesis investigates the problem of robot navigation using only landmark bearings. The proposed system allows a robot to move to a ground target location specified by the sensor values observed at this ground target posi- tion. The control actions are computed based on the difference between the current landmark bearings and the target landmark bearings. No Cartesian coordinates with respect to the ground are computed by the control system. The robot navigates using solely information from the bearing sensor space. Most existing robot navigation systems require a ground frame (2D Cartesian coordinate system) in order to navigate from a ground point A to a ground point B. The commonly used sensors such as laser range scanner, sonar, infrared, and vision do not directly provide the 2D ground coordi- nates of the robot. The existing systems use the sensor measurements to localise the robot with respect to a map, a set of 2D coordinates of the objects of interest. It is more natural to navigate between the points in the sensor space corresponding to A and B without requiring the Cartesian map and the localisation process. Research on animals has revealed how insects are able to exploit very limited computational and memory resources to successfully navigate to a desired destination without computing Cartesian positions. For example, a honeybee balances the left and right optical flows to navigate in a nar- row corridor. Unlike many other ants, Cataglyphis bicolor does not secrete pheromone trails in order to find its way home but instead uses the sun as a compass to keep track of its home direction vector. The home vector can be inaccurate, so the ant also uses landmark recognition. More precisely, it takes snapshots and compass headings of some landmarks. To return home, the ant tries to line up the landmarks exactly as they were before it started wandering. This thesis introduces a navigation method based on reflex actions in sensor space. The sensor vector is made of the bearings of some landmarks, and the reflex action is a gradient descent with respect to the distance in sensor space between the current sensor vector and the target sensor vec- tor. Our theoretical analysis shows that except for some fully characterized pathological cases, any point is reachable from any other point by reflex action in the bearing sensor space provided the environment contains three landmarks and is free of obstacles. The trajectories of a robot using reflex navigation, like other image- based visual control strategies, do not correspond necessarily to the shortest paths on the ground, because the sensor error is minimized, not the moving distance on the ground. However, we show that the use of a sequence of waypoints in sensor space can address this problem. In order to identify relevant waypoints, we train a Self Organising Map (SOM) from a set of observations uniformly distributed with respect to the ground. This SOM provides a sense of location to the robot, and allows a form of path planning in sensor space. The navigation proposed system is analysed theoretically, and evaluated both in simulation and with experiments on a real robot.

Page generated in 0.0971 seconds