Spelling suggestions: "subject:"dod??le dde transfert radiation (MTR)"" "subject:"dod??le dde transfert radiating (MTR)""
1 |
Mod??lisation de l?????mission micro-onde hivernale en for??t bor??ale canadienneRoy, Alexandre January 2014 (has links)
La caract??risation du couvert nival en for??t bor??ale est un ??l??ment important pour la compr??hension des r??gimes climatiques et hydrologiques. Depuis plusieurs ann??es, l???utilisation des micro-ondes passives est ??tudi??e pour l???estimation de l?????quivalent en eau de la neige (SWE : Snow Water Equivalent) ?? partir de capteurs satellitaires. Les algorithmes empiriques traditionnels ??tant limit??s en for??t bor??ale, le couplage d???un mod??le de transfert radiatif (MTR) micro-onde passive (qui prend en compte les contributions du sol, de la neige, de la v??g??tation et de l???atmosph??re) avec un mod??le de neige pour l???inversion du SWE semble une avenue prometteuse. La th??se vise donc ?? coupler un MTR avec le sch??ma de surface du mod??le climatique canadien (CLASS) dans une perspective d???application op??rationnelle pour les estimations de SWE ?? partir de donn??es satellitaires micro-onde ?? 10.7, 19 et 37 GHz. Dans ce contexte, certains aspects centraux du MTR, dont l???effet de la taille des grains ainsi que la contribution de la v??g??tation sont d??velopp??s et quantifi??s. Le premier aspect ??tudi?? dans la th??se concerne l???adaptation du mod??le d?????mission micro-onde passive DMRT-ML (Dense media radiative transfer theory ??? multi layer) pour l???int??gration d???une nouvelle m??trique repr??sentant la taille des grains (surface sp??cifique des grains de neige: SSA). L?????tude bas??e sur des mesures radiom??triques et de neige in situ, montre la pertinence de l???utilisation de la SSA dans DMRT-ML et permet d???analyser le sens physique de l???adaptation n??cessaire pour amener le mod??le ?? simuler les temp??ratures de brillance (T[indice inf??rieur B) de la neige avec une erreur quadratique moyenne minimale de l???ordre de 13 K. Dans un contexte du couplage entre le mod??le de neige de CLASS et DMRT-ML, un mod??le d?????volution de la SSA est ensuite impl??ment?? dans CLASS. Les SSA simul??es par le module d??velopp?? sont valid??es avec des donn??es in situ bas??es sur la r??flectance de la neige dans l???infrarouge ?? courte longueur d???onde pour diff??rents types d???environnement. Au niveau de la contribution de la v??g??tation, le mod??le ??-?? a ??t?? ??tudi?? ?? partir de diff??rentes bases de donn??es (satellite, avion et au sol) en for??t bor??ale dense. L?????tude montre l???importance de la consid??ration de la diffusion (??) pour l???estimation de l?????mission de la v??g??tation, param??tre auparavant g??n??ralement n??glig?? aux hautes fr??quences. Ensuite, des relations entre les transmissivit??s et certains param??tres structuraux de la for??t, dont l???indice de surface foliaire (LAI), ont ??t?? ??tablies pour des for??ts bor??ales en ??t??. Des valeurs d???alb??do de diffusion (??) ainsi que les param??tres d??finissant la r??flectivit?? du sol (QH) en for??t bor??ale ont aussi ??t?? invers??es. Finalement, les simulations de T [indice inf??rieur] B issues du couplage du MTR (DMRT-ML, mod??le ??-??, et mod??le
atmosph??rique) avec CLASS (dont les SSA simul??es) ont ??t?? compar??es avec les donn??es AMSR-E sur une s??rie temporelle continue de sept ans. Les premi??res comparaisons montrent une diff??rence entre les param??tres de v??g??tation (??-??) d?????t?? et d???hiver, ainsi qu???une importante contribution des cro??tes de glace dans la neige au signal. Les simulations du mod??le ajust?? montrent une bonne correspondance avec les observations d???AMSR-E (de l???ordre de 3 ?? 7 K selon la fr??quence et la polarisation). Des tests de sensibilit?? montrent par contre une faible sensibilit?? du MTR/CLASS au SWE pour des for??ts denses et des couverts nivaux ??pais. Le MTR-CLASS d??velopp?? pourrait permettre l???assimilation de temp??ratures de brillance satellitaires en for??t bor??ale dans des syst??mes op??rationnels pour l???am??lioration de param??tres de surface, dont la neige, dans les mod??les m??t??orologiques et climatiques.
|
Page generated in 0.1517 seconds