• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Fouille de données stochastique pour la compréhension des dynamiques temporelles et spatiales des territoires agricoles. Contribution à une agronomie numérique / Stochastic data mining for the understanding of temporal and spatial dynamics in agricultural landscapes. Contribution to a numerical landscape agronomy

Lazrak, El Ghali 19 September 2012 (has links)
Cette thèse vise à développer une méthode générique de modélisation des dynamiques passées et actuelles de l'organisation territoriale de l'activité agricole (OTAA). Nous avons développé une méthode de modélisation stochastique fondée sur des modèles de Markov cachés qui permet de fouiller un corpus de données spatio-temporelles d'occupations du sol (OCS) en vue de le segmenter et de révéler des dynamiques agricoles cachées. Nous avons testé cette méthode sur des corpus d'OCS issus de sources variées et appartenant à des territoires agricoles de dimensions. Cette méthode apporte 3 contributions à la modélisation de l'OTAA : (i) la description de l'OTAA suivant une approche temporo-spatiale qui identifie des régularités temporelles, puis les localise en segmentant le territoire agricole en zones compactes de régularités temporelles similaires; (ii) la fouille des voisinages des successions d'OCS et de leurs dynamiques; (iii) l'articulation des régularités révélées par notre approche de fouille de données à l'échelle régionale avec des règles identifiées par des experts en agronomie et en écologie à des échelles plus locales en vue d'expliquer les régularités et de valider les hypothèses des experts. Nos résultats valident l'hypothèse que l'OTAA se prête bien à la représentation par un champs de Markov de successions. Cette thèse ouvre la voie à une nouvelle approche de modélisation de l'OTAA explorant le couplage entre régularités et règles, et exploitant davantage les outils d'intelligence artificielle. Elle constituerait les prémices de ce qui pourrait devenir une agronomie numérique des territoires / The purpose of this thesis is to develop a generic method for modelling the past and current dynamics of Landscape Organization of Farming Activity (LOFA). We developed a stochastic modelling method based on Hidden Markov Models that allows data mining within a corpus of spatio-temporal land use data to segment the corpus and reveal hidden agricultural dynamics. We applied this method to land use corpora from various sources belonging to two agricultural landscapes of regional dimension. This method provides three contributions to the modeling of LOFA : (i) LOFA description following a temporo-spatial approach that first identifies temporal regularities and then localizes them by segmenting the agricultural landscape into compact areas having similar temporal regularities; (ii) data mining of the neighborhood of land use successions and their dynamics; (iii) combining of the regularities revealed by our data mining approach at the regional level with rules identified by agronomy and ecology experts at more local scales to explain the regularities and validate the experts' hypotheses. Our results validate the hypothesis according to which LOFA fits well a Markov field of land-use successions. This thesis opens the door to a new LOFA modelling approach that investigates the combining of regularities and rules and that further exploits artificial intelligence tools. This work could serve as the beginning of what could become a numerical landscape agronomy
2

Structures Markoviennes cachées et modèles à corrélations conditionnelles dynamiques: extensions et applications aux corrélations d'actifs financiers.

Charlot, Philippe 25 November 2010 (has links) (PDF)
L'objectif de cette thèse est d'étudier le problème de la modélisation des changements de régime dans les modèles à corrélations conditionnelles dynamiques en nous intéressant plus particulièrement à l'approche Markov-switching. A la différence de l'approche standard basée sur le modèle à chaîne de Markov caché (HMM) de base, nous utilisons des extensions du modèle HMM provenant des modèles graphiques probabilistes. Cette discipline a en effet proposé de nombreuses dérivations du modèle de base permettant de modéliser des structures complexes. Cette thèse se situe donc à l'interface de deux disciplines: l'économétrie financière et les modèles graphiques probabilistes. Le premier essai présente un modèle construit à partir d'une structure hiérarchique cachée markovienne qui permet de définir différents niveaux de granularité pour les régimes. Il peut être vu comme un cas particulier du modèle RSDC (Regime Switching for Dynamic Correlations). Basé sur le HMM hiérarchique, notre modèle permet de capter des nuances de régimes qui sont ignorées par l'approche Markov-Switching classique. La seconde contribution propose une version Markov-switching du modèle DCC construite à partir du modèle HMM factorisé. Alors que l'approche Markov-switching classique suppose que les tous les éléments de la matrice de corrélation suivent la même dynamique, notre modèle permet à tous les éléments de la matrice de corrélation d'avoir leur propre dynamique de saut. Dans la dernière contribution, nous proposons un modèle DCC construit à partir d'un arbre de décision. L'objectif de cet arbre est de relier le niveau des volatilités individuelles avec le niveau des corrélations. Pour cela, nous utilisons un arbre de décision Markovien caché, qui est une extension de HMM.
3

Fouille de données stochastique pour la compréhension des dynamiques temporelles et spatiales des territoires agricoles. Contribution à une agronomie numérique des territoires.

Lazrak, El Ghali 19 September 2012 (has links) (PDF)
L'agriculture est l'activité humaine qui utilise et transforme la plus grande partie de la surface terrestre. Son intensification et son uniformisation ont engendré plusieurs problèmes écologiques et environnementaux. Comprendre les dynamiques passées et actuelles des territoires agricoles à des échelles régionales, compatibles avec les échelles où s'expriment les services environnementaux et écologiques, est nécessaire pour mieux gérer l'évolution future des territoires agricoles. Pourtant, la plupart des travaux qui ont étudié les dynamiques agricoles à des échelles régionales ne distinguent pas les dynamiques liées au fonctionnement régulier de l'activité agricole de celles liées à des changements dans son fonctionnement. Les autres travaux rapportés dans la littérature qui font cette distinction présentent toutefois l'inconvénient d'être difficilement reproductibles. Cette thèse vise ainsi à développer une méthode générique de modélisation des dynamiques passées et actuelles de l'organisation territoriale de l'activité agricole (OTAA). Nous avons développé une méthode de modélisation stochastique fondée sur des modèles de Markov cachés qui permet de fouiller un corpus de données spatio-temporelles d'occupations du sol (OCS) en vue de le segmenter et de révéler des dynamiques agricoles cachées. Nous avons testé cette méthode sur des corpus d'OCS issus de sources variées (relevés de terrain, télédétection) et appartenant à deux territoires agricoles de dimensions régionales : le site d'étude de Chizé (430 km², Poitou-Charentes) et le bassin versant du Yar (60 km², Bretagne). Cette méthode apporte 3 contributions à la modélisation de l'OTAA : (i) la description de l'OTAA suivant une approche temporo-spatiale qui identifie des régularités temporelles, puis les localise en segmentant le territoire agricole en zones compactes de régularités temporelles similaires; (ii) la fouille des voisinages des successions d'OCS et de leurs dynamiques; (iii) l'articulation des régularités révélées par notre approche de fouille de données à l'échelle régionale avec des règles identifiées par des experts en agronomie et en écologie à des échelles plus locales en vue d'expliquer les régularités et de valider les hypothèses des experts. Nous avons testé la généricité de la première contribution sur les deux territoires d'études. Les deux dernières contributions ont été développées et testées sur le site d'étude de Chizé. Nos résultats valident l'hypothèse que l'OTAA se prête bien à la représentation par un champs de Markov de successions. Cette thèse ouvre la voie à une nouvelle approche de modélisation de l'OTAA explorant le couplage entre régularités et règles, et exploitant davantage les outils d'intelligence artificielle. Elle constituerait les prémices de ce qui pourrait devenir une agronomie numérique des territoires.

Page generated in 0.0759 seconds