• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Etude numérique de la transformation des vagues en zone littorale, de la zone de levée aux zones de surf et de jet de rive

Tissier, Marion 15 December 2011 (has links)
Dans cette thèse, nous introduisons un nouveau modèle instationnaire de vagues valable de la zone de levée à la zone de jet de rive adapté à l'étude de la submersion. Le modèle est basé sur les équations de Serre Green-Naghdi (S-GN), dont l'application à la zone de surf reste un domaine de recherche ouvert. Nous proposons une nouvelle approche pour gérer le déferlement dans ce type de modèle, basée sur la représentation des fronts déferlés par des chocs. Cette approche a été utilisée avec succès pour les modèles basés sur les équations de Saint-Venant (SV) et permet une description simple et efficace du déferlement et des mouvements de la ligne d'eau. Dans ces travaux, nous cherchons à étendre le domaine de validité du modèle SV SURF-WB (Marche et al. 2007) vers la zone de levée en incluant les termes dispersifs propres aux équations de S-GN. Des basculements locaux vers les équations de SV au niveau des fronts permettent alors aux vagues de déferler et dissiper leur énergie. Le modèle obtenu, appelé SURF-GN, est validé à l'aide de données de laboratoire correspondant à différents types de vagues incidentes et de plages. Il est ensuite utilisé pour analyser la dynamique des fronts d'ondes longues de type tsunami en zone littorale. Nous montrons que SURF-GN peut décrire les différents types de fronts, d'ondulé non-déferlé à purement déferlé. Les conséquences de la transformation d'une onde de type tsunami en train d'ondulations lors de la propagation sur une plage sont ensuite considérées. Nous présentons finalement une étude de la célérité des vagues déferlées, basée sur les données de la campagne de mesure in-situ ECORS Truc-Vert 2008. L'influence des non-linéarités est en particulier quantifiée. / In this thesis, we introduce a new numerical model able to describe wave transformation from the shoaling to the swash zones, including overtopping. This model is based on Serre Green-Naghdi equations, which are the basic fully nonlinear Boussinesq-type equations. These equations can accurately describe wave dynamics prior to breaking, but their application to the surf zone usually requires the use of complex parameterizations. We propose a new approach to describe wave breaking in S-GN models, based on the representation of breaking wave fronts as shocks. This method has been successfully applied to the Nonlinear Shallow Water (NSW) equations, and allows for an easy treatment of wave breaking and shoreline motions. However, the NSW equations can only be applied after breaking. In this thesis, we aim at extending the validity domain of the NSW model SURF-WB (Marche et al. 2007) to the shoaling zone by adding the S-GN dispersive terms to the governing equations. Local switches to NSW equations are then performed in the vicinity of the breaking fronts, allowing for the waves to break and dissipate their energy. Extensive validations using laboratory data are presented. The new model, called SURF-GN, is then applied to study tsunami-like undular bore dynamics in the nearshore. The model ability to describe bore dynamics for a large range of Froude number is first demonstrated, and the effects of the bore transformation on wave run-up over a sloping beach are considered. We finally present an in-situ study of broken wave celerity, based on the ECORS-Truc Vert 2008 field experiment. In particular, we quantify the effects of non-linearities and evaluate the predictive ability of several non-linear celerity models.
2

Free surface flow simulation in estuarine and coastal environments : numerical development and application on unstructured meshes / Simulation des écoulements à la surface libre dans des environnements côtiers et estuariens : développement numérique et application sur des maillages non-structurés

Filippini, Andrea Gilberto 14 December 2016 (has links)
Over the last decades, there has been considerable attention in the accurate mathematical modeling and numerical simulations of free surface wave propagation in near-shore environments. A physical correct description of the large scale phenomena, which take place in the shallow water region, must account for strong nonlinear and dispersive effects, along with the interaction with complex topographies. First, a study on the behavior in nonlinear regime of different Boussinesq-type models is proposed, showing the advantage of using fully-nonlinear models with respect to weakly-nonlinear and weakly dispersive models (commonly employed). Secondly, a new flexible strategy for solving the fully-nonlinear and weakly-dispersive Green-Naghdi equations is presented, which allows to enhance an existing shallow water code by simply adding an algebraic term to the momentum balance and is particularly adapted for the use of hybrid techniques for wave breaking. Moreover, the first discretization of the Green-Naghdi equations on unstructured meshes is proposed via hybrid finite volume/ finite element schemes. Finally, the models and the methods developed in the thesis are deployed to study the physical problem of bore formation in convergent alluvial estuary, providing the first characterization of natural estuaries in terms of bore inception. / Ces dernières décennies, une attention particulière a été portée sur la modélisation mathématique et la simulation numérique de la propagation de vagues en environnements côtiers. Une description physiquement correcte des phénomènes à grande échelle, qui apparaissent dans les régions d'eau peu profonde, doit prendre en compte de forts effets non-linéaires et dispersifs, ainsi que l'interaction avec des bathymétries complexes. Dans un premier temps, une étude du comportement en régime non linéaire de différents modèles de type Boussinesq est proposée, démontrant l'avantage d'utiliser des modèles fortement non-linéaires par rapport à des modèles faiblement non-linéaires et faiblement dispersifs (couramment utilisés). Ensuite, une nouvelle approche flexible pour résoudre les équations fortement non-linéaires et faiblement dispersives de Green-Naghdi est présentée. Cette stratégie permet d'améliorer un code "shallow water" existant par le simple ajout d'un terme algébrique dans l'équation du moment et est particulièrement adapté à l'utilisation de techniques hybrides pour le déferlement des vagues. De plus, la première discrétisation des équations de Green-Naghdi sur maillage non structuré est proposée via des schémas hybrides Volume Fini/Élément Fini. Finalement, les modèles et méthodes développés dans la thèse sont appliqués à l'étude du problème physique de la formation du mascaret dans des estuaires convergents et alluviaux. Cela a amené à la première caractérisation d'estuaire naturel en terme d'apparition de mascaret.

Page generated in 0.0637 seconds