Spelling suggestions: "subject:"modèle soumaille"" "subject:"modèle sousfamille""
1 |
Spectral analysis of the turbulent energy cascade and the development of a novel nonlinear subgrid-scale model for large eddy simulation / Analyse spectrale de la cascade d’énergie turbulente et développement d’un nouveau modèle non-linéaire sous-maille pour la simulation de grandes échellesAndrade, João Rodrigo 27 March 2019 (has links)
L’objectif de cette thèse est d’analyser et d’acquérir de nouvelles connaissances sur le comportement de la dynamique de petites échelles des écoulements turbulents et de proposer un nouveau modèle sous-maille non linéaire pour la simulation des grandes échelles de la turbulence. De cette façon, la présente thèse est subdivisée en trois parties principales. Le premier sujet concerne l’analyse des incertitudes statistiques associées aux données de simulation numérique directe pour des écoulements turbulents en canal plan, fournissant une nouvelle quantification physique de ces erreurs. Dans cette analyse, l’erreur de vitesse moyenne est estimée en prenant en compte le tenseur de contrainte de Reynolds et en utilisant l’équation de forces moyennes. Cette analyse est effectuée afin de vérifier la qualité des données statistiques provenant de la simulation numérique directe appliquée dans le présent travail. Deuxièmement, pour comprendre la physique contenue dans l’ensemble du spectre de nombre d’ondes des écoulements turbulents, une analyse du bilan d’énergie cinétique turbulente dans un écoulement de canal plan turbulent complètement développé est réalisée. L’analyse est centrée sur l’influence du nombre de Reynolds sur la cascade spectrale d’énergie et la cascade d’énergie correspondante dans l’espace physique en présence d’inhomogénéité et d’anisotropie. Finalement, nous présentons un nouveau modèle sous-maille non linéaire, conçu pour la simulation des grandes échelles de la turbulence, basé sur un ensemble de tenseurs objectifs. Dans le modèle de fermeture proposé, le tenseur de contrainte à l’échelle sous-maille est fonction du tenseur de la vitesse de déformation et du tenseur de non-persistance de contraintes, où les deux sont des entités cinématiques locales et objectives. Le tenseur non-persistance de contraintes représente la capacité locale du fluide à ne pas être constamment étiré. Pour vérifier la cohérence du modèle proposé, de tests a priori et a posteriori sont effectués en simulant différents écoulements turbulents délimités par de parois. Des comparaisons avec le tenseur de contrainte exact à l’échelle de sous-maille et de données expérimentales ont révélé que l’inclusion de termes non linéaires dans le modèle sous-maille peut conduire à de meilleurs résultats, montrant le potentiel important de la base tensorielle proposée. / The purpose of the present work is to analyze and to provide an enhancement of the knowledge about the subgrid-scale behavior and to propose novel nonlinear subgrid-scale models for large eddy simulations of turbulent fluid flows. In this way, the present thesis is subdivided into three main parts. The first topic is an analysis of the statistical uncertainties associated with direct numerical simulation data for turbulent channel flow, showing a novel physicallybased quantification of these errors. In this analysis, the mean velocity error is estimated by considering the Reynolds stress tensor, and using the balance of mean force equation. This analysis is performed in order to verify the quality of the statistical data coming from the direct numerical simulation applied in the present work. Secondly, seeking to understand the contained physics in the whole wavenumber spectrum of turbulent flows, an analysis of the spectral turbulent kinetic energy budget in fully developed turbulent plane channel flow is performed. The analysis is focused on the influence of the Reynolds number on the spectral cascade of energy and the corresponding energy cascade in physical space in the presence of inhomogeneity and anisotropy. Finally, a novel nonlinear subgrid-scale model for large eddy simulation based on a set of objective tensors is presented. In the proposed closure model, the modeled subgrid-scale stress tensor is a function of the resolved rate-of-strain tensor and the resolved non-persistence-of-straining tensor, where both are local and objective kinematic entities. The non-persistence-of-straining tensor represents the local ability of the fluid to avoid being persistently stretched. To check the consistency of the proposed model, a priori and a posteriori tests are performed by simulating different wall-bounded turbulent flows. Comparisons with the exact subgrid-scale stress tensor and experimental data revealed that the inclusion of nonlinear terms on the subgrid-scale model can significantly increase the accuracy of the results, showing the great potential of the proposed tensorial base.
|
2 |
Optical flow estimation with subgrid model for study of turbulent flow / Estimation du champ de vitesse d'un écoulement turbulentCassisa, Cyril 07 April 2011 (has links)
L’objectif de cette thèse est l’étude de l’évolution de champ scalaire transporté par un écoulement à partir d’une séquence d’images temporelles. L’estimation du champ de vitesse d’un écoulement turbulent est d’une importance majeure pour mieux comprendre le phénomène physique. Jusqu’à présent, le problème de la turbulence est généralement ignoré dans l’équation de mouvement des méthodes existantes. Les images contiennent une information discrète correspondant à la taille du pixel. Selon le niveau de turbulence de l’écoulement, les résolutions des pixels et du temps peuvent devenir trop grandes pour négliger l’effet des petites échelles (sous-pixel) sur le champ de vitesse. Nous proposons pour cela, une équation de mouvement définie par l’équation de transport de concentration filtrée pour laquelle un modèle classique de viscosité turbulente sous-maille est introduit afin de tenir compte de cet effet. Nous utilisons pour formuler le problème, une approche Markovienne. Une méthode de multirésolution par décomposition pyramidale, sans transformation d’image intermédiaire au cours du processus, est proposée. Cela permet de diminuer le nombre d’opérations sur les images. La méthode d’optimisation utilisée, couplée avec une approche multigrille, permet d’obtenir le champ de vitesse réel optimal. Notre approche est testée sur des séquences d’images synthétiques et réelles (expérience PIV et tempête de sable à partir d’image de télédétection) avec des nombres de Reynolds élevés. Les comparaisons avec des approches existantes sont très prometteuses. / The objective of this thesis is to study the evolution of scalar field carried by a flow from a temporal image sequence. The estimation of the velocity field of turbulent flow is of major importance for understanding the physical phenomenon. Up to now the problem of turbulence is generally ignored in the flow equation of existing methods. An information given by image is discrete at pixel size. Depending on the turbulent rate of the flow, pixel and time resolutions may become too large to neglect the effect of sub-pixel small-scales on the pixel velocity field. For this, we propose a flow equation defined by a filtered concentration transport equation where a classic turbulent sub-grid eddy viscosity model is introduced in order to account for this effect. To formulate the problem, we use a Markovian approach. An unwarping multiresolution by pyramidal decomposition is proposed which reduces the number of operations on images. The optimization coupled with a multigrid approach allows to estimate the optimal 2D real velocity field. Our approach is tested on synthetic andreal image sequences (PIV laboratory experiment and remote sensing data of dust storm event) with high Reynolds number. Comparisons with existing approaches are very promising.
|
3 |
Modélisation d'écoulements atmosphériques stratifiés par Large-Eddy Simulation à l'aide de Code_SaturneDall'Ozzo, Cédric 14 June 2013 (has links) (PDF)
La modélisation par simulation des grandes échelles (Large-Eddy Simulation - LES) des processus physiques régissant la couche limite atmosphérique (CLA) demeure complexe de part la difficulté des modèles à capter l'évolution de la turbulence entre différentes conditions de stratification. De ce fait, l'étude LES du cycle diurne complet de la CLA comprenant des situations convectives la journée et des conditions stables la nuit est très peu documenté. La simulation de la couche limite stable où la turbulence est faible, intermittente et qui est caractérisée par des structures turbulentes de petite taille est tout particulièrement compliquée. En conséquence, la capacité de la LES à bien reproduire les conditions météorologiques de la CLA, notamment en situation stable, est étudiée à l'aide du code de mécanique des fluides développé par EDF R&D, Code_Saturne. Dans une première étude, le modèle LES est validé sur un cas de couche limite convective quasi stationnaire sur terrain homogène. L'influence des modèles sous-maille de Smagorinsky, Germano-Lilly, Wong-Lilly et WALE (Wall-Adapting Local Eddy-viscosity) ainsi que la sensibilité aux méthodes de paramétrisation sur les champs moyens, les flux et les variances est discutées. Dans une seconde étude le cycle diurne complet de la CLA pendant la campagne de mesure Wangara est modélisé. L'écart aux mesures étant faible le jour, ce travail se concentre sur les difficultés rencontrées la nuit à bien modéliser la couche limite stable. L'impact de différents modèles sous-maille ainsi que la sensibilité au coefficient de Smagorinsky ont été analysés. Par l'intermédiaire d'un couplage radiatif réalisé en LES, les répercussions du rayonnement infrarouge et solaire sur le jet de basse couche nocturne et le gradient thermique près de la surface sont exposées. De plus l'adaptation de la résolution du domaine à l'intensité de la turbulence et la forte stabilité atmosphérique durant l'expérience Wangara sont commentées. Enfin un examen des oscillations numériques inhérentes à Code_Saturne est réalisé afin d'en limiter les effets
|
4 |
Evaluation et développement de modèles sous-maille pour la simulation des grandes échelles du mélange turbulent basés sur l'estimation optimale et l'apprentissage supervisé / Evaluation et development of subgrid scale models for large eddy simulation of mixing based on optimal estimator and machin learningVollant, Antoine 20 October 2015 (has links)
Dans ce travail, des méthodes de diagnostics et des techniques de développement de modèles sous-maille sont proposées pour la simulation des grandes échelles (SGE) du mélange turbulent. Plusieurs modèles sous-maille issus de ces stratégies sont ainsi présentés pour illustrer ces méthodes.Le principe de la SGE est de résoudre les grandes échelles de l'écoulement responsables des transferts principaux et de modéliser l'action des petites échelles de l'écoulement sur les échelles résolues. Au cours de ce travail, nous nous sommes appuyés sur le classement des modèles sous-maille en deux catégories. Les modèles "fonctionnels" qui s'attachent à reproduire les transferts énergétiques entre les échelles résolues et les échelles modélisées et les modèles "structurels" qui cherchent à bien reproduire le terme sous-maille. Le premier enjeu important a été d'évaluer la performance des modèles sous-maille en prenant en compte leur comportement à la fois fonctionnel (capacité à reproduire les transferts d'énergie) et structurel (capacité à reproduire le terme sous-maille exact). Des diagnosctics des modèles sous-maille ont pu être conduits avec l'utilisation de la notion d'estimateur optimal ce qui permet de connaitre le potentiel d'amélioration structurelle des modèles. Ces principes ont dans un premier temps servi au développement d'une première famille de modèles sous-maille algébrique appelée DRGM pour "Dynamic Regularized Gradient Model". Cette famille de modèles s'appuie sur le diagnostic structurel des termes issus de la régularisation des modèles de la famille du gradient. D'après les tests menés, cette nouvelle famille de modèle structurel a de meilleures performances fonctionnelles et structurelles que les modèles de la famille du gradient. L'amélioration des performances fonctionnelles consiste à supprimer la prédiction excessive de transferts inverses d'énergie (backscatter) observés dans les modèles de la famille du gradient. Cela permet ainsi de supprimer le comportement instable classiquement observé pour cette famille de modèles. La suite de ce travail propose ensuite d'utiliser l'estimateur optimal directement comme modèle sous-maille. Comme l'estimateur optimal fournit le modèle ayant la meilleure performance structurelle pour un jeu de variables donné, nous avons recherché le jeu de variable optimisant cette performance. Puisque ce jeu comporte un nombre élevé de variables, nous avons utilisé les fonctions d'approximation de type réseaux de neurones pour estimer cet estimateur optimal. Ce travail a mené au nouveau modèle substitut ANNM pour "Artificial Neural Network Model". Ces fonctions de substitution se construisent à partir de bases de données servant à émuler les termes exacts nécessaire à la détermination de l'estimateur optimal. Les tests de ce modèle ont montré qu'il avait de très bonnes perfomances pour des configurations de simulation peu éloignées de la base de données servant à son apprentissage, mais qu'il pouvait manquer d'universalité. Pour lever ce dernier verrou, nous avons proposé une utilisation hybride des modèles algébriques et des modèles de substitution à base de réseaux de neurones. La base de cette nouvelle famille de modèles ACM pour "Adaptative Coefficient Model" s'appuie sur les décompositions vectorielles et tensorielles des termes sous-maille exacts. Ces décompositions nécessitent le calcul de coefficients dynamiques qui sont modélisés par les réseaux de neurones. Ces réseaux bénéficient d'une méthode d'apprentissage permettant d'optimiser directement les performances structurelles et fonctionnelles des modèles ACM. Ces modèles hybrides allient l'universalité des modèles algébriques avec la performance élevée mais spécialisée des fonctions de substitution. Le résultat conduit à des modèles plus universels que l'ANNM. / This work develops subgrid model techniques and proposes methods of diagnosis for Large Eddy Simulation (LES) of turbulent mixing.Several models from these strategies are thus presented to illustrate these methods.The principle of LES is to solve the largest scales of the turbulent flow responsible for major transfers and to model the action of small scales of flowon the resolved scales. Formally, this operation leads to filter equations describing turbulent mixing. Subgrid terms then appear and must bemodeled to close the equations. In this work, we rely on the classification of subgrid models into two categories. "Functional" models whichreproduces the energy transfers between the resolved scales and modeled scales and "Structural" models that seek to reproduce the exact subgrid termitself. The first major challenge is to evaluate the performance of subgrid models taking into account their functional behavior (ability to reproduce theenergy transfers) and structural behaviour (ability to reproduce the term subgrid exactly). Diagnostics of subgrid models have been enabled with theuse of the optimal estimator theory which allows the potential of structural improvement of the model to be evaluated.These methods were initially involved for the development of a first family of models called algebraic subgrid $DRGM$ for "Dynamic Regularized GradientModel". This family of models is based on the structural diagnostic of terms given by the regularization of the gradient model family.According to the tests performed, this new structural model's family has better functional and structural performance than original model's family of thegradient. The improved functional performance is due to the vanishing of inverse energy transfer (backscatter) observed in models of thegradient family. This allows the removal of the unstable behavior typically observed for this family of models.In this work, we then propose the use of the optimal estimator directly as a subgrid scale model. Since the optimal estimator provides the modelwith the best structural performance for a given set of variables, we looked for the set of variables which optimize that performance. Since this set of variablesis large, we use surrogate functions of artificial neural networks type to estimate the optimal estimator. This leads to the "Artificial Neural Network Model"(ANNM). These alternative functions are built from databases in order to emulate the exact terms needed to determine the optimal estimator. The tests of this modelshow that he it has very good performance for simulation configurations not very far from its database used for learning, so these findings may fail thetest of universality.To overcome this difficulty, we propose a hybrid method using an algebraic model and a surrogate model based on artificial neural networks. Thebasis of this new model family $ACM$ for "Adaptive Coefficient Model" is based on vector and tensor decomposition of the exact subgrid terms. Thesedecompositions require the calculation of dynamic coefficients which are modeled by artificial neural networks. These networks have a learning method designedto directlyoptimize the structural and functional performances of $ACM$. These hybrids models combine the universality of algebraic model with high performance butvery specialized performance of surrogate models. The result give models which are more universal than ANNM.
|
5 |
Modélisation d'écoulements atmosphériques stratifiés par Large-Eddy Simulation à l'aide de Code_Saturne / Large-eddy simulation of stratified atmospheric flows with the CFD code Code_SaturneDall'Ozzo, Cédric 14 June 2013 (has links)
La modélisation par simulation des grandes échelles (Large-Eddy Simulation - LES) des processus physiques régissant la couche limite atmosphérique (CLA) demeure complexe de part la difficulté des modèles à capter l'évolution de la turbulence entre différentes conditions de stratification. De ce fait, l'étude LES du cycle diurne complet de la CLA comprenant des situations convectives la journée et des conditions stables la nuit est très peu documenté. La simulation de la couche limite stable où la turbulence est faible, intermittente et qui est caractérisée par des structures turbulentes de petite taille est tout particulièrement compliquée. En conséquence, la capacité de la LES à bien reproduire les conditions météorologiques de la CLA, notamment en situation stable, est étudiée à l'aide du code de mécanique des fluides développé par EDF R&D, Code_Saturne. Dans une première étude, le modèle LES est validé sur un cas de couche limite convective quasi stationnaire sur terrain homogène. L'influence des modèles sous-maille de Smagorinsky, Germano-Lilly, Wong-Lilly et WALE (Wall-Adapting Local Eddy-viscosity) ainsi que la sensibilité aux méthodes de paramétrisation sur les champs moyens, les flux et les variances est discutées. Dans une seconde étude le cycle diurne complet de la CLA pendant la campagne de mesure Wangara est modélisé. L'écart aux mesures étant faible le jour, ce travail se concentre sur les difficultés rencontrées la nuit à bien modéliser la couche limite stable. L'impact de différents modèles sous-maille ainsi que la sensibilité au coefficient de Smagorinsky ont été analysés. Par l'intermédiaire d'un couplage radiatif réalisé en LES, les répercussions du rayonnement infrarouge et solaire sur le jet de basse couche nocturne et le gradient thermique près de la surface sont exposées. De plus l'adaptation de la résolution du domaine à l'intensité de la turbulence et la forte stabilité atmosphérique durant l'expérience Wangara sont commentées. Enfin un examen des oscillations numériques inhérentes à Code_Saturne est réalisé afin d'en limiter les effets / Large-eddy simulation (LES) of the physical processes in the atmospheric boundary layer (ABL) remains a complex subject. LES models have difficulties to capture the evolution of the turbulence in different conditions of stratification. Consequently, LES of the whole diurnal cycle of the ABL including convetive situations in daytime and stable situations in the night time is seldom documented. The simulation of the stable atmospheric boundary layer which is characterized by small eddies and by weak and sporadic turbulence is espacialy difficult. Therefore The LES ability to well reproduce real meteorological conditions, particularly in stable situations, is studied with the CFD code developed by EDF R&D, Code_Saturne. The first study consist in validate LES on a quasi-steady state convective case with homogeneous terrain. The influence of the subgrid-scale models (Smagorinsky model, Germano-Lilly model, Wong-Lilly model and Wall-Adapting Local Eddy-viscosity model) and the sensitivity to the parametrization method on the mean fields, flux and variances are discussed.In a second study, the diurnal cycle of the ABL during Wangara experiment is simulated. The deviation from the measurement is weak during the day, so this work is focused on the difficulties met during the night to simulate the stable atmospheric boundary layer. The impact of the different subgrid-scale models and the sensitivity to the Smagorinsky constant are been analysed. By coupling radiative forcing with LES, the consequences of infra-red and solar radiation on the nocturnal low level jet and on thermal gradient, close to the surface, are exposed. More, enhancement of the domain resolution to the turbulence intensity and the strong atmospheric stability during the Wangara experiment are analysed. Finally, a study of the numerical oscillations inherent to Code_Saturne is realized in order to decrease their effects
|
Page generated in 0.0716 seconds