• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Contrôle de têtes parlantes par inversion acoustico-articulatoire pour l'apprentissage et la réhabilitation du langage

Ben youssef, Atef 26 October 2011 (has links) (PDF)
Les sons de parole peuvent être complétés par l'affichage des articulateurs sur un écran d'ordinateur pour produire de la parole augmentée, un signal potentiellement utile dans tous les cas où le son lui-même peut être difficile à comprendre, pour des raisons physiques ou perceptuelles. Dans cette thèse, nous présentons un système appelé retour articulatoire visuel, dans lequel les articulateurs visibles et non visibles d'une tête parlante sont contrôlés à partir de la voix du locuteur. La motivation de cette thèse était de développer un tel système qui pourrait être appliqué à l'aide à l'apprentissage de la prononciation pour les langues étrangères, ou dans le domaine de l'orthophonie. Nous avons basé notre approche de ce problème d'inversion sur des modèles statistiques construits à partir de données acoustiques et articulatoires enregistrées sur un locuteur français à l'aide d'un articulographe électromagnétique (EMA). Notre approche avec les modèles de Markov cachés (HMMs) combine des techniques de reconnaissance automatique de la parole et de synthèse articulatoire pour estimer les trajectoires articulatoires à partir du signal acoustique. D'un autre côté, les modèles de mélanges gaussiens (GMMs) estiment directement les trajectoires articulatoires à partir du signal acoustique sans faire intervenir d'information phonétique. Nous avons basé notre évaluation des améliorations apportées à ces modèles sur différents critères : l'erreur quadratique moyenne (RMSE) entre les coordonnées EMA originales et reconstruites, le coefficient de corrélation de Pearson, l'affichage des espaces et des trajectoires articulatoires, aussi bien que les taux de reconnaissance acoustique et articulatoire. Les expériences montrent que l'utilisation d'états liés et de multi-gaussiennes pour les états des HMMs acoustiques améliore l'étage de reconnaissance acoustique des phones, et que la minimisation de l'erreur générée (MGE) dans la phase d'apprentissage des HMMs articulatoires donne des résultats plus précis par rapport à l'utilisation du critère plus conventionnel de maximisation de vraisemblance (MLE). En outre, l'utilisation du critère MLE au niveau de mapping direct de l'acoustique vers l'articulatoire par GMMs est plus efficace que le critère de minimisation de l'erreur quadratique moyenne (MMSE). Nous constatons également trouvé que le système d'inversion par HMMs est plus précis celui basé sur les GMMs. Par ailleurs, des expériences utilisant les mêmes méthodes statistiques et les mêmes données ont montré que le problème de reconstruction des mouvements de la langue à partir des mouvements du visage et des lèvres ne peut pas être résolu dans le cas général, et est impossible pour certaines classes phonétiques. Afin de généraliser notre système basé sur un locuteur unique à un système d'inversion de parole multi-locuteur, nous avons implémenté une méthode d'adaptation du locuteur basée sur la maximisation de la vraisemblance par régression linéaire (MLLR). Dans cette méthode MLLR, la transformation basée sur la régression linéaire qui adapte les HMMs acoustiques originaux à ceux du nouveau locuteur est calculée de manière à maximiser la vraisemblance des données d'adaptation. Finalement, cet étage d'adaptation du locuteur a été évalué en utilisant un système de reconnaissance automatique des classes phonétique de l'articulation, dans la mesure où les données articulatoires originales du nouveau locuteur n'existent pas. Finalement, en utilisant cette procédure d'adaptation, nous avons développé un démonstrateur complet de retour articulatoire visuel, qui peut être utilisé par un locuteur quelconque. Ce système devra être évalué de manière perceptive dans des conditions réalistes.
2

Contrôle de têtes parlantes par inversion acoustico-articulatoire pour l’apprentissage et la réhabilitation du langage / Control of talking heads by acoustic-to-articulatory inversion for language learning and rehabilitation

Ben Youssef, Atef 26 October 2011 (has links)
Les sons de parole peuvent être complétés par l'affichage des articulateurs sur un écran d'ordinateur pour produire de la parole augmentée, un signal potentiellement utile dans tous les cas où le son lui-même peut être difficile à comprendre, pour des raisons physiques ou perceptuelles. Dans cette thèse, nous présentons un système appelé retour articulatoire visuel, dans lequel les articulateurs visibles et non visibles d'une tête parlante sont contrôlés à partir de la voix du locuteur. La motivation de cette thèse était de développer un tel système qui pourrait être appliqué à l'aide à l'apprentissage de la prononciation pour les langues étrangères, ou dans le domaine de l'orthophonie. Nous avons basé notre approche de ce problème d'inversion sur des modèles statistiques construits à partir de données acoustiques et articulatoires enregistrées sur un locuteur français à l'aide d'un articulographe électromagnétique (EMA). Notre approche avec les modèles de Markov cachés (HMMs) combine des techniques de reconnaissance automatique de la parole et de synthèse articulatoire pour estimer les trajectoires articulatoires à partir du signal acoustique. D'un autre côté, les modèles de mélanges gaussiens (GMMs) estiment directement les trajectoires articulatoires à partir du signal acoustique sans faire intervenir d'information phonétique. Nous avons basé notre évaluation des améliorations apportées à ces modèles sur différents critères : l'erreur quadratique moyenne (RMSE) entre les coordonnées EMA originales et reconstruites, le coefficient de corrélation de Pearson, l'affichage des espaces et des trajectoires articulatoires, aussi bien que les taux de reconnaissance acoustique et articulatoire. Les expériences montrent que l'utilisation d'états liés et de multi-gaussiennes pour les états des HMMs acoustiques améliore l'étage de reconnaissance acoustique des phones, et que la minimisation de l'erreur générée (MGE) dans la phase d'apprentissage des HMMs articulatoires donne des résultats plus précis par rapport à l'utilisation du critère plus conventionnel de maximisation de vraisemblance (MLE). En outre, l'utilisation du critère MLE au niveau de mapping direct de l'acoustique vers l'articulatoire par GMMs est plus efficace que le critère de minimisation de l'erreur quadratique moyenne (MMSE). Nous constatons également trouvé que le système d'inversion par HMMs est plus précis celui basé sur les GMMs. Par ailleurs, des expériences utilisant les mêmes méthodes statistiques et les mêmes données ont montré que le problème de reconstruction des mouvements de la langue à partir des mouvements du visage et des lèvres ne peut pas être résolu dans le cas général, et est impossible pour certaines classes phonétiques. Afin de généraliser notre système basé sur un locuteur unique à un système d'inversion de parole multi-locuteur, nous avons implémenté une méthode d'adaptation du locuteur basée sur la maximisation de la vraisemblance par régression linéaire (MLLR). Dans cette méthode MLLR, la transformation basée sur la régression linéaire qui adapte les HMMs acoustiques originaux à ceux du nouveau locuteur est calculée de manière à maximiser la vraisemblance des données d'adaptation. Finalement, cet étage d'adaptation du locuteur a été évalué en utilisant un système de reconnaissance automatique des classes phonétique de l'articulation, dans la mesure où les données articulatoires originales du nouveau locuteur n'existent pas. Finalement, en utilisant cette procédure d'adaptation, nous avons développé un démonstrateur complet de retour articulatoire visuel, qui peut être utilisé par un locuteur quelconque. Ce système devra être évalué de manière perceptive dans des conditions réalistes. / Speech sounds may be complemented by displaying speech articulators shapes on a computer screen, hence producing augmented speech, a signal that is potentially useful in all instances where the sound itself might be difficult to understand, for physical or perceptual reasons. In this thesis, we introduce a system called visual articulatory feedback, in which the visible and hidden articulators of a talking head are controlled from the speaker's speech sound. The motivation of this research was to develop such a system that could be applied to Computer Aided Pronunciation Training (CAPT) for learning of foreign languages, or in the domain of speech therapy. We have based our approach to this mapping problem on statistical models build from acoustic and articulatory data. In this thesis we have developed and evaluated two statistical learning methods trained on parallel synchronous acoustic and articulatory data recorded on a French speaker by means of an electromagnetic articulograph. Our Hidden Markov models (HMMs) approach combines HMM-based acoustic recognition and HMM-based articulatory synthesis techniques to estimate the articulatory trajectories from the acoustic signal. Gaussian mixture models (GMMs) estimate articulatory features directly from the acoustic ones. We have based our evaluation of the improvement results brought to these models on several criteria: the Root Mean Square Error between the original and recovered EMA coordinates, the Pearson Product-Moment Correlation Coefficient, displays of the articulatory spaces and articulatory trajectories, as well as some acoustic or articulatory recognition rates. Experiments indicate that the use of states tying and multi-Gaussian per state in the acoustic HMM improves the recognition stage, and that the minimum generation error (MGE) articulatory HMMs parameter updating results in a more accurate inversion than the conventional maximum likelihood estimation (MLE) training. In addition, the GMM mapping using MLE criteria is more efficient than using minimum mean square error (MMSE) criteria. In conclusion, we have found that the HMM inversion system has a greater accuracy compared with the GMM one. Beside, experiments using the same statistical methods and data have shown that the face-to-tongue inversion problem, i.e. predicting tongue shapes from face and lip shapes cannot be solved in a general way, and that it is impossible for some phonetic classes. In order to extend our system based on a single speaker to a multi-speaker speech inversion system, we have implemented a speaker adaptation method based on the maximum likelihood linear regression (MLLR). In MLLR, a linear regression-based transform that adapts the original acoustic HMMs to those of the new speaker was calculated to maximise the likelihood of adaptation data. Finally, this speaker adaptation stage has been evaluated using an articulatory phonetic recognition system, as there are not original articulatory data available for the new speakers. Finally, using this adaptation procedure, we have developed a complete articulatory feedback demonstrator, which can work for any speaker. This system should be assessed by perceptual tests in realistic conditions.
3

Some advances in patch-based image denoising / Quelques avancées dans le débruitage d'images par patchs

Houdard, Antoine 12 October 2018 (has links)
Cette thèse s'inscrit dans le contexte des méthodes non locales pour le traitement d'images et a pour application principale le débruitage, bien que les méthodes étudiées soient suffisamment génériques pour être applicables à d'autres problèmes inverses en imagerie. Les images naturelles sont constituées de structures redondantes, et cette redondance peut être exploitée à des fins de restauration. Une manière classique d’exploiter cette auto-similarité est de découper l'image en patchs. Ces derniers peuvent ensuite être regroupés, comparés et filtrés ensemble.Dans le premier chapitre, le principe du "global denoising" est reformulé avec le formalisme classique de l'estimation diagonale et son comportement asymptotique est étudié dans le cas oracle. Des conditions précises à la fois sur l'image et sur le filtre global sont introduites pour assurer et quantifier la convergence.Le deuxième chapitre est consacré à l'étude d’a priori gaussiens ou de type mélange de gaussiennes pour le débruitage d'images par patches. Ces a priori sont largement utilisés pour la restauration d'image. Nous proposons ici quelques indices pour répondre aux questions suivantes : Pourquoi ces a priori sont-ils si largement utilisés ? Quelles informations encodent-ils ?Le troisième chapitre propose un modèle probabiliste de mélange pour les patchs bruités, adapté à la grande dimension. Il en résulte un algorithme de débruitage qui atteint les performance de l'état-de-l'art.Le dernier chapitre explore des pistes d'agrégation différentes et propose une écriture de l’étape d'agrégation sous la forme d'un problème de moindre carrés. / This thesis studies non-local methods for image processing, and their application to various tasks such as denoising. Natural images contain redundant structures, and this property can be used for restoration purposes. A common way to consider this self-similarity is to separate the image into "patches". These patches can then be grouped, compared and filtered together.In the first chapter, "global denoising" is reframed in the classical formalism of diagonal estimation and its asymptotic behaviour is studied in the oracle case. Precise conditions on both the image and the global filter are introduced to ensure and quantify convergence.The second chapter is dedicated to the study of Gaussian priors for patch-based image denoising. Such priors are widely used for image restoration. We propose some ideas to answer the following questions: Why are Gaussian priors so widely used? What information do they encode about the image?The third chapter proposes a probabilistic high-dimensional mixture model on the noisy patches. This model adopts a sparse modeling which assumes that the data lie on group-specific subspaces of low dimensionalities. This yields a denoising algorithm that demonstrates state-of-the-art performance.The last chapter explores different way of aggregating the patches together. A framework that expresses the patch aggregation in the form of a least squares problem is proposed.
4

Exploring variabilities through factor analysis in automatic acoustic language recognition / Exploration par l'analyse factorielle des variabilités de la reconnaissance acoustique automatique de la langue / Erforschung durch Faktor-Analysis der Variabilitäten der automatischen akustischen Sprachen-Erkennung

Verdet, Florian 05 September 2011 (has links)
La problématique traitée par la Reconnaissance de la Langue (LR) porte sur la définition découverte de la langue contenue dans un segment de parole. Cette thèse se base sur des paramètres acoustiques de courte durée, utilisés dans une approche d’adaptation de mélanges de Gaussiennes (GMM-UBM). Le problème majeur de nombreuses applications du vaste domaine de la re- problème connaissance de formes consiste en la variabilité des données observées. Dans le contexte de la Reconnaissance de la Langue (LR), cette variabilité nuisible est due à des causes diverses, notamment les caractéristiques du locuteur, l’évolution de la parole et de la voix, ainsi que les canaux d’acquisition et de transmission. Dans le contexte de la reconnaissance du locuteur, l’impact de la variabilité solution peut sensiblement être réduit par la technique d’Analyse Factorielle (Joint Factor Analysis, JFA). Dans ce travail, nous introduisons ce paradigme à la Reconnaissance de la Langue. Le succès de la JFA repose sur plusieurs hypothèses. La première est que l’information observée est décomposable en une partie universelle, une partie dépendante de la langue et une partie de variabilité, qui elle est indépendante de la langue. La deuxième hypothèse, plus technique, est que la variabilité nuisible se situe dans un sous-espace de faible dimension, qui est défini de manière globale.Dans ce travail, nous analysons le comportement de la JFA dans le contexte d’un dispositif de LR du type GMM-UBM. Nous introduisons et analysons également sa combinaison avec des Machines à Vecteurs Support (SVM). Les premières publications sur la JFA regroupaient toute information qui est amélioration nuisible à la tâche (donc ladite variabilité) dans un seul composant. Celui-ci est supposé suivre une distribution Gaussienne. Cette approche permet de traiter les différentes sortes de variabilités d’une manière unique. En pratique, nous observons que cette hypothèse n’est pas toujours vérifiée. Nous avons, par exemple, le cas où les données peuvent être groupées de manière logique en deux sous-parties clairement distinctes, notamment en données de sources téléphoniques et d’émissions radio. Dans ce cas-ci, nos recherches détaillées montrent un certain avantage à traiter les deux types de données par deux systèmes spécifiques et d’élire comme score de sortie celui du système qui correspond à la catégorie source du segment testé. Afin de sélectionner le score de l’un des systèmes, nous avons besoin d’un analyses détecteur de canal source. Nous proposons ici différents nouveaux designs pour engendrées de tels détecteurs automatiques. Dans ce cadre, nous montrons que les facteurs de variabilité (du sous-espace) de la JFA peuvent être utilisés avec succès pour la détection de la source. Ceci ouvre la perspective intéressante de subdiviser les5données en catégories de canal source qui sont établies de manière automatique. En plus de pouvoir s’adapter à des nouvelles conditions de source, cette propriété permettrait de pouvoir travailler avec des données d’entraînement qui ne sont pas accompagnées d’étiquettes sur le canal de source. L’approche JFA permet une réduction de la mesure de coûts allant jusqu’à généraux 72% relatives, comparé au système GMM-UBM de base. En utilisant des systèmes spécifiques à la source, suivis d’un sélecteur de scores, nous obtenons une amélioration relative de 81%. / Language Recognition is the problem of discovering the language of a spoken definitionutterance. This thesis achieves this goal by using short term acoustic information within a GMM-UBM approach.The main problem of many pattern recognition applications is the variability of problemthe observed data. In the context of Language Recognition (LR), this troublesomevariability is due to the speaker characteristics, speech evolution, acquisition and transmission channels.In the context of Speaker Recognition, the variability problem is solved by solutionthe Joint Factor Analysis (JFA) technique. Here, we introduce this paradigm toLanguage Recognition. The success of JFA relies on several assumptions: The globalJFA assumption is that the observed information can be decomposed into a universalglobal part, a language-dependent part and the language-independent variabilitypart. The second, more technical assumption consists in the unwanted variability part to be thought to live in a low-dimensional, globally defined subspace. In this work, we analyze how JFA behaves in the context of a GMM-UBM LR framework. We also introduce and analyze its combination with Support Vector Machines(SVMs).The first JFA publications put all unwanted information (hence the variability) improvemen tinto one and the same component, which is thought to follow a Gaussian distribution.This handles diverse kinds of variability in a unique manner. But in practice,we observe that this hypothesis is not always verified. We have for example thecase, where the data can be divided into two clearly separate subsets, namely datafrom telephony and from broadcast sources. In this case, our detailed investigations show that there is some benefit of handling the two kinds of data with two separatesystems and then to elect the output score of the system, which corresponds to the source of the testing utterance.For selecting the score of one or the other system, we need a channel source related analyses detector. We propose here different novel designs for such automatic detectors.In this framework, we show that JFA’s variability factors (of the subspace) can beused with success for detecting the source. This opens the interesting perspectiveof partitioning the data into automatically determined channel source categories,avoiding the need of source-labeled training data, which is not always available.The JFA approach results in up to 72% relative cost reduction, compared to the overall resultsGMM-UBM baseline system. Using source specific systems followed by a scoreselector, we achieve 81% relative improvement.

Page generated in 0.1256 seconds