• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

On inverse reinforcement learning and dynamic discrete choice for predicting path choices

Kristensen, Drew 11 1900 (has links)
La modélisation du choix d'itinéraire est un sujet de recherche bien étudié avec des implications, par exemple, pour la planification urbaine et l'analyse des flux d'équilibre du trafic. En raison de l'ampleur des effets que ces problèmes peuvent avoir sur les communautés, il n'est pas surprenant que plusieurs domaines de recherche aient tenté de résoudre le même problème. Les défis viennent cependant de la taille des réseaux eux-mêmes, car les grandes villes peuvent avoir des dizaines de milliers de segments de routes reliés par des dizaines de milliers d'intersections. Ainsi, les approches discutées dans cette thèse se concentreront sur la comparaison des performances entre des modèles de deux domaines différents, l'économétrie et l'apprentissage par renforcement inverse (IRL). Tout d'abord, nous fournissons des informations sur le sujet pour que des chercheurs d'un domaine puissent se familiariser avec l'autre domaine. Dans un deuxième temps, nous décrivons les algorithmes utilisés avec une notation commune, ce qui facilite la compréhension entre les domaines. Enfin, nous comparons les performances des modèles sur des ensembles de données du monde réel, à savoir un ensemble de données couvrant des choix d’itinéraire de cyclistes collectés dans un réseau avec 42 000 liens. Nous rapportons nos résultats pour les deux modèles de l'économétrie que nous discutons, mais nous n'avons pas pu générer les mêmes résultats pour les deux modèles IRL. Cela était principalement dû aux instabilités numériques que nous avons rencontrées avec le code que nous avions modifié pour fonctionner avec nos données. Nous proposons une discussion de ces difficultés parallèlement à la communication de nos résultats. / Route choice modeling is a well-studied topic of research with implications, for example, for city planning and traffic equilibrium flow analysis. Due to the scale of effects these problems can have on communities, it is no surprise that diverse fields have attempted solutions to the same problem. The challenges, however, come with the size of networks themselves, as large cities may have tens of thousands of road segments connected by tens of thousands of intersections. Thus, the approaches discussed in this thesis will be focusing on the performance comparison between models from two different fields, econometrics and inverse reinforcement learning (IRL). First, we provide background on the topic to introduce researchers from one field to become acquainted with the other. Secondly, we describe the algorithms used with a common notation to facilitate this building of understanding between the fields. Lastly, we aim to compare the performance of the models on real-world datasets, namely covering bike route choices collected in a network of 42,000 links. We report our results for the two models from econometrics that we discuss, but were unable to generate the same results for the two IRL models. This was primarily due to numerical instabilities we encountered with the code we had modified to work with our data. We provide a discussion of these difficulties alongside the reporting of our results.

Page generated in 0.1244 seconds