Spelling suggestions: "subject:"Mod-p local langlands"" "subject:"Mod-p local ganglands""
1 |
On supersingular representations of GL(2, D) with a division algebra D over a p-adic fieldWijerathne, Wijerathne Mudiyanselage Menake 01 August 2022 (has links) (PDF)
Let D be a division algebra over a p-adic field of characteristic 0. We investigate the mod-p supersingular representations of GL(2, D) by computing a basis for the space of invariants of a certain quotient under the pro-p Iwahori subgroup. This generalizes the previous works of Hendel and Schein.
|
2 |
p-adic and mod p local-global compatibility for GLn(ℚp) / La compatibilité local-global p-adique et modulo p pour GLn(ℚp)Qian, Zicheng 02 July 2019 (has links)
Cette thèse est consacrée à deux aspects du programme de Langlands local p-adique et de la compatibilité local-global p-adique.Dans la première partie, j'étudie la question de savoir comment extraire, d'un certain sous-espace Hecke-isotypique de formes automorphes modulo p, suffisament d'invariants d'une représentation galoisienne. Soient p un nombre premier, n>2 un entier, et F un corps à multiplication complexe dans lequel p est complètement décomposé. Supposons qu'une représentation galoisienne automorphe continue r-:Gal(Q-/F)→GLn(F-p) est triangulaire supérieure et suffisament générique ( dans un certain sens ) en une place w au-dessus de p. On montre, en admettant un résultat d'élimination de poids de Serre prouvé dans [LLMPQ], que la classe d'isomorphisme de r-|_Gal(Q-p/Fw) est déterminée par l'action de GLn(Fw) sur un espace de formes automorphes modulo p découpé par l'idéal maximal associée à r- dans une algèbre de Hecke. En particulier, on montre que la partie sauvagement ramifiée de r-|_Gal(Q-p/Fw) est déterminée par l'action de sommes de Jacobi ( vus comme éléments de Fp[GLn(Fp)] ) sur cet espace.La deuxième partie de ma thèse vise à établir une relation entre les résultats précédents de [Schr11], [Bre17] and [BD18]. Soient E une extension finie de Qp suffisamment grande et ρp: Gal(Q-p/Qp)→GL3(E) une représentation p-adique semi-stable telle que la représentation de Weil-Deligne WD(ρp) associée a un opérateur de monodromie N de rang 2 et que la filtration de Hodge associée est non-critique. On sait que la filtration de Hodge de ρp dépend de trois invariants dans E. On construit une famille de représentations localement analytiques Σ^min(λ, L1, L2, L3) qui dépend de trois invariants L1, L2, L3 dans E et telle que chaque représentation contient la représentation localement algébrique Algotimes Steinberg déterminée par ρp. Quand ρp provient, pour un groupe unitaire convenable G/Q, d'une représentation automorphe π de G(A_Q) avec un niveau fixé U^p premier avec p, on montre ( sous quelques hypothèses techniques ) qu'il existe une unique représentation localement analytique dans la famille ci-dessus qui est une sous-représentation du sous-espace Hecke-isotypique associé dans la cohomologie complétée de niveau U^p. On rappelle que [Bre17] a construit une famille de représentations localement analytiques qui dépend de quatre invariants (voir (4) dans [Bre17]) avec une propriété similaire. On donne un critère purement de théorie de représentation: si une représentation Π dans la famille de Breuil se plonge dans un certain sous-espace Hecke-isotypique de la cohomologie complétée, alors elle se plonge nécessairement dans une Σ^min(λ, L1, L2, L3) pour certains choix de L1, L2, L3 dans E qui sont déterminés explicitement par Π. De plus, certains sous-quotients naturels de Σ^min(λ, L1, L2, L3) permettent de construite un complexe de représentations localement analytiques qui "réalise" l'objet dérivé abstrait Σ(λ, underline{L}) defini dans [Schr11]. / This thesis is devoted to two aspects of the p-adic local Langlands program and p-adic local-global compatibility.In the first part, I study the problem of how to capture enough invariants of a local Galois representation from a certain Hecke-isotypic subspace of mod p automorphic forms. Let p be a prime number, n>2 an integer, and F a CM field in which p splits completely. Assume that a continuous automorphic Galois representation r-:Gal(Q-/F)→GLn(F-p) is upper-triangular and satisfies certain genericity conditions at a place w above p, and that every subquotient of r-|_Gal(Q-p/Fw) of dimension >2 is Fontaine-Laffaille generic. We show that the isomorphism class of r-|_Gal(Q-p/Fw) is determined by GLn(Fw)-action on a space of mod p algebraic automorphic forms cut out by the maximal ideal of a Hecke algebra associated to r-, assuming a weight elimination result which is now a theorem to appear in [LLMPQ]. In particular, we show that the wildly ramified part of r-|_Gal(Q-p/Fw) is determined by the action of Jacobi sum operators ( seen as elements of Fp[GLn(Fp)] ) on this space.The second part of my thesis aims at clarifying the relation between previous results in [Schr11], [Bre17] and [BD18]. Let E be a sufficiently large finite extension of Qp and ρp be a p-adic semi-stable representation Gal(Q-p/Qp)→GL3(E) such that the Weil-Deligne representation WD(ρp) associated with it has rank two monodromy operator N and the Hodge filtration associated with it is non-critical. We know that the Hodge filtration of ρp depends on three invariants in E. We construct a family of locally analytic representations Σ^min(λ, L1, L2, L3) of GL3(Qp) depending on three invariants L1, L2, L3 in E with each of the representation containing the locally algebraic representation Algotimes Steinberg determined by ρp. When ρp comes from an automorphic representation π of G(A_Q) with a fixed level U^p prime to p for a suitable unitary group G/Q, we show ( under some technical assumption ) that there is a unique locally analytic representation in the above family that occurs as a subrepresentation of the associated Hecke-isotypic subspace in the completed cohomology with level U^p. We recall that [Bre17] constructed a family of locally analytic representations depending on four invariants ( cf. (4) in [Bre17] ) with a similar property. We give a purely representation theoretic criterion: if a representation Π in Breuil's family embeds into a certain Hecke-isotypic subspace of completed cohomology, then it must equally embed into Σ^min(λ, L1, L2, L3) for certain choices of L1, L2, L3 in E determined explicitly by Π. Moreover, certain natural subquotients of Σ^min(λ, L1, L2, L3) give a true complex of locally analytic representations that realizes the derived object Σ(λ, underline{L}) [Schr11]. Consequently, the family of locally analytic representations Σ^min(λ, L1, L2, L3) give a relation between the higher L-invariants studied in [Bre17] as well as [BD18] and the p-adic dilogarithm function which appears in the construction of Σ^min(λ, L1, L2, L3) in [Schr11].
|
Page generated in 0.2438 seconds