• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • Tagged with
  • 6
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Generalized Pushover Analysis For Unsymmetrical-plan Buildings

Kaatsiz, Kaan 01 July 2012 (has links) (PDF)
Nonlinear response history analysis is regarded as the most accurate analysis procedure for estimating seismic response. Approximate analysis procedures are also available for the determination of seismic response and they are preferred over nonlinear response history analysis since much less computational effort is required and good response prediction is achieved by employing rather simple concepts. A generalized pushover analysis procedure is developed in this thesis study as an approximate analysis tool for estimating the inelastic seismic response of structures under earthquake ground excitations. The procedure consists of applying generalized force vectors to the structure in an incremental form until a prescribed target interstory drift demand is achieved. Corresponding generalized force vectors are derived according to this target drift parameter and include the contribution of all modes. Unlike many approximate analysis procedures, response of the structure is directly obtained from generalized pushover analysis results without employing a modal combination rule, eliminating the errors cultivating from these methods. Compared to nonlinear response history analysis, generalized pushover analysis is less demanding in computational effort and its implementation is simpler relative to other approximate analysis procedures. It is observed that the proposed analysis procedure yields results accurately in comparison to the other nonlinear pushover analysis methods. Accordingly it can be suggested as a convenient and sound analysis tool.
2

Evaluation Of Pushover Analysis Procedures For Frame Structures

Oguz, Sermin 01 May 2005 (has links) (PDF)
Pushover analysis involves certain approximations and simplifications that some amount of variation is always expected to exist in seismic demand prediction of pushover analysis. In literature, some improved pushover procedures have been proposed to overcome the certain limitations of traditional pushover procedures. The effects and the accuracy of invariant lateral load patterns utilised in pushover analysis to predict the behavior imposed on the structure due to randomly selected individual ground motions causing elastic and various levels of nonlinear response were evaluated in this study. For this purpose, pushover analyses using various invariant lateral load patterns and Modal Pushover Analysis were performed on reinforced concrete and steel moment resisting frames covering a broad range of fundamental periods. Certain response parameters predicted by each pushover procedure were compared with the &#039 / exact&#039 / results obtained from nonlinear dynamic analysis. The primary observations from the study showed that the accuracy of the pushover results depends strongly on the load path, properties of the structure and the characteristics of the ground motion. Pushover analyses were performed by both DRAIN-2DX and SAP2000. Similar pushover results were obtained from the two different softwares employed in the study provided that similar approach is used in modeling the nonlinear properties of members as well as their structural features. The accuracy of approximate procedures utilised to estimate target displacement was also studied on frame structures. The accuracy of the predictions was observed to depend on the approximations involved in the theory of the procedures, structural properties and ground motion characteristics.
3

Dynamic Pull Analysis For Estimating The Seismic Response

Degirmenci, Can 01 November 2006 (has links) (PDF)
The analysis procedures employed in earthquake engineering can be classified as linear static, linear dynamic, nonlinear static and nonlinear dynamic. Linear procedures are usually referred to as force controlled and require less analysis time and less computational effort. On the other hand, nonlinear procedures are referred to as deformation controlled and they are more reliable in characterizing the seismic performance of buildings. However, there is still a great deal of unknowns for nonlinear procedures, especially in modelling the reinforced concrete structures. Turkey ranks high among all countries that have suffered losses of life and property due to earthquakes over many centuries. These casualties indicate that, most regions of the country are under seismic risk of strong ground motion. In addition to this phenomenon, recent studies have demonstrated that near fault ground motions are more destructive than far-fault ones on structures and these effects can not be captured effectively by recent nonlinear static procedures. The main objective of this study is developing a simple nonlinear dynamic analysis procedure which is named as &ldquo / Dynamic Pull Analysis&rdquo / for estimating the seismic response of multi degree of freedom (MDOF) systems. The method is tested on a six-story reinforced concrete frame and a twelve-story reinforced concrete frame that are designed according to the regulations of TS-500 (2000) and TEC (1997).
4

An Equivalent Linearization Procedure For Seismic Response Prediction Of Mdof Systems

Gunay, Mehmet Selim 01 March 2008 (has links) (PDF)
Nonlinear response history analysis is accepted as the most accurate analytical tool for seismic response determination. However, accurate estimation of displacement responses using conceptually simple, approximate analysis procedures is preferable, since there are shortcomings in the application of nonlinear response history analysis resulting from its complexity. An equivalent linearization procedure, which utilizes the familiar response spectrum analysis as the analysis tool and benefits from the capacity principles, is developed in this thesis study as an approximate method for predicting the inelastic seismic displacement response of MDOF systems under earthquake excitations. The procedure mainly consists of the construction of an equivalent linear system by reducing the stiffness of structural members which are expected to respond in the inelastic range. Different from similar studies in literature, equivalent damping is not explicitly employed in this study. Instead, predetermined spectral displacement demands are utilized in each mode of the equivalent linear system for the determination of global displacement demands. Response predictions of the equivalent linearization procedure are comparatively evaluated by using the benchmark nonlinear response history analysis results and other approximate methods including conventional pushover analysis and modal pushover analysis (MPA). It is observed that the proposed procedure results in similar accuracy with approximate methods which employ nonlinear analysis. Considering the conceptual simplicity of the procedure and the conventional analysis tools used in its application, presented equivalent linearization procedure can be suggested as a practically applicable method for the prediction of inelastic seismic displacement response parameters with sufficient accuracy.
5

Seismic Strengthening Of A Mid-rise Reinforced Concrete Frame Using Cfrps: An Application From Real Life

Tan, Mustafa Tumer 01 May 2009 (has links) (PDF)
SEISMIC STRENGTHENING OF A MID-RISE REINFORCED CONCRETE FRAME USING CFRPs: AN APPLICATION FROM REAL LIFE Tan, Mustafa T&uuml / mer M.S., Department Of Civil Engineering Supervisor: Prof. Dr. G&uuml / ney &Ouml / zcebe Co-Supervisor: Assoc. Prof. Dr. BariS Binici May 2009, 162 pages FRP retrofitting allows the utilization of brick infill walls as lateral load resisting elements. This practical retrofit scheme is a strong alternative to strengthen low to mid-rise deficient reinforced concrete (RC) structures in Turkey. The advantages of the FRP applications, to name a few, are the speed of construction and elimination of the need for building evacuation during construction. In this retrofit scheme, infill walls are adopted to the existing frame system by using FRP tension ties anchored the boundary frame using FRP dowels. Results of experiments have previously shown that FRP strengthened infill walls can enhance lateral load carrying capacity and reduce damage by limiting interstory drift deformations. In previous, analytical studies, a detailed mathematical model and a simplified version of the model for compression struts and tension ties was proposed and verified by comparing model estimations with test results. In this study, an existing 9-storey deficient RC building located in Antakya was chosen to design and apply a hybrid strengthening scheme with FRPs and reduced number of shear walls. Linear elastic analysis procedure was utilized (force based assessment technique) along with the rules of Mode Superposition Method for the reftrofit design. FRP retrofit scheme was employed using the simplified model and design was conducted such that life safety performance criterion is satisfied employing elastic spectrum with 10% probability of exceedance in 50 years according to the Turkish Earthquake Code 2007. Further analytical studies are performed by using Modal Pushover and Nonlinear Time-History Analyses. At the end of these nonlinear analyses, performance check is performed according to Turkish Earthquake Code 2007, using the strains resulting from the sum of yield and plastic rotations at demand in the critical sections. CFRP retrofitting works started at October 2008 and finished at December 2008 for the building mentioned in this study. Eccentric reinforced concrete shearwall installation is still being undertaken. All construction business is carried out without evacuation of the building occupants. This project is one of the first examples of its kind in Turkey. Keywords: CFRP, Carbon Fiber Reinforced Polymers, Masonry Infill Walls, Reinforced Concrete Infill Walls, Mid-Rise Deficient Structures, Turkish Earthquake Code 2007, Modal Pushover Analysis, Nonlinear Time History Analysis, Linear Elastic Building Assessment
6

Comparación de la vulnerabilidad sísmica de edificios de concreto armado de 35 pisos con núcleo rígido, con amortiguadores de fluido viscoso y disipadores SLB, mediante el análisis modal pushover en la ciudad de Lima / Comparison of the seismic vulnerability of 35-story reinforced concrete buildings with a rigid core, with viscous fluid dampers and SLB dissipators, using pushover modal analysis in Lima city

Arita Claros, Luis Humberto, Lezameta Navarro, Rodrigo André 15 January 2021 (has links)
Actualmente en la ciudad de Lima existe un número limitado de edificios de gran altura. Por lo que no existe mucha literatura de este tipo de edificaciones en Perú. Los códigos peruanos se enfocan en edificios de mediana y baja altura. Por ello, se requiere realizar estudios más detallados para analizar y diseñar de forma más adecuada estas edificaciones altas según la realidad del país. En el presente artículo, se desarrollará el análisis modal pushover a 6 tipos de edificaciones de concreto armado de 35 niveles en la ciudad de Lima. Se plantea 3 modelos de edificación con distinto sistema estructural y con diferentes plantas (cuadrada y rectangular), siendo las áreas de 29m x 29m y 52m x 26m respectivamente. Estos sistemas estructurales son de núcleo rígido y pórticos con sistema de disipación de energía (amortiguadores de fluido viscoso y disipadores SLB) con objetivo de estudiar su comportamiento frente a solicitaciones sísmicas. Estas edificaciones se establecieron en función de los criterios y requerimientos de los códigos vigentes en el país, como también, distribución de la planta de edificaciones comúnmente usadas para oficinas y viviendas. Se encontró que los periodos naturales oscilan entre 2.6 a 3.3 segundos para edificios de núcleo rígido, se presenta un incremento para los edificios de amortiguamiento viscoso de 4.2 a 5.4 segundos y también para los de dispositivos SLB oscilan en un rango de 3.7 a 4.6 segundos. Se realizó, a su vez, un análisis no lineal estático modal para obtener las curvas de capacidad para cada tipo de edificación, las cuales fueron comparadas con las demandas sísmicas según las provisiones de diseño de la norma peruana sísmica E.030 y un promedio de espectros de registros de aceleraciones de eventos sísmicos severos en Perú y escalados en un rango de 0.2T a 1.5T. Finalmente, se determinó los puntos de desempeño para cada caso de edificación siguiendo las metodologías del ATC-40 encontrando que los edificios altos con núcleo rígido presentan aproximadamente el doble de rigidez que los edificios con sistema de disipación de energía, como también, presentan poca ductilidad a diferencia con los edificios con disipadores que presentan una larga ductilidad. / Currently in Lima city there is a limited number of high-rise buildings. So, there isn’t much literature on this type of building in Peru. Peruvian codes focus on medium and low-rise buildings. Therefore, more detailed studies are required to analyze and design these tall buildings more appropriately according to the reality of the country. In this thesis, the modal pushover analysis of 6 types of 35-story reinforced concrete buildings in Lima city will be developed. Three building models with different structural system and with different plan (square and rectangular) are proposed, being their areas of 29m x 29m and 52m x 26m respectively. These structural systems are rigid core and frames with an energy dissipation system (viscous fluid dampers and SLB dissipators) in order to study their behavior against seismic stresses. These buildings were established based on the criteria and requirements of the current codes in the country, as well as, the distribution of the floors of buildings commonly used for offices and homes. Natural periods were found to range from 2.6 to 3.3 seconds for rigid core buildings, there is an increase for viscous damping buildings from 4.2 to 5.4 seconds and also for SLB devices to range from 3.7 to 4.6 seconds. In turn, a modal static nonlinear analysis was performed to obtain the capacity curves for each type of building, which were compared with the seismic demands according to the design provisions of the Peruvian seismic code E.030 and an average of spectra of acceleration records of severe seismic events in Peru and scaled in a range of 0.2T to 1.5T. Finally, the performance points for each building case were determined following the ATC-40 methodologies, finding that tall buildings with a rigid core have approximately twice the stiffness of buildings with an energy dissipation system, as well as having low ductility. unlike buildings with dissipators that have long ductility. / Tesis

Page generated in 0.051 seconds