Spelling suggestions: "subject:"podèle IV"" "subject:"modèle IV""
1 |
Investigation of SiPM physics parameters down to cryogenic temperatures and for a bio-medical application / Etude des détecteurs SiPM jusqu’aux températures cryogéniques et pour une application biomédicaleNagai, Andrii 22 September 2016 (has links)
Les Photomultiplicateurs Silicium (SiPM) sont devenus aujourd’hui des détecteurs de lumière visible, applicables dans de nombreux domaines comme la Physique des Hautes Énergies, les expériences Neutrinos, la détection de fluorescence, pour des applications de biophotonique ou d’imagerie médicale. La première partie de ma thèse concerne l’étude des divers paramètres physiques des SiPM en fonction de température T. En particulier, des composants récents (2015) de KETEK ayant diverses caractéristiques technologiques comme des jonctions p/n ou n/p, avec ou sans « trench » entre cellules, différentes épaisseurs de couches épitaxiales, etc… ont été étudiés dans la gamme de T de 308.15 K (+35°C) à 238.15 K (-35°C). En plus, des composants Hamamatsu de production 2011, ainsi que de production 2015 avec des caractéristiques technologiques améliorées (faible bruit), ont été testés dans la gamme 318.15 K (+45°C) à 98.15 K (-175°C). Pour ces études, j’ai participé à la conception, l’installation, la mise en service et la calibration d’un banc cryogénique destiné aux caractérisations électriques, optiques, et en température, des SiPM. J’ai développé une procédure d’analyse automatisée, capable de traiter en un temps très court une énorme quantité de données expérimentales (i.e. dizaines de Gb/détecteur), et de fournir une information rapide et précise sur les principaux paramètres et leur dépendance en T. J’ai développé un modèle physique décrivant les courbes IV en DC pour différentes T. Ce modèle proposé reproduit bien la forme de la courbe IV dans une large gamme de courants allant de 10⁻¹² à 10⁻⁵ A sur toute la zone de fonctionnement des divers détecteurs. Ainsi, le modèle IV peut être utilisé comme un outil simple et rapide pour déterminer les paramètres du SiPM comme le VBD, la forme de la courbe PGeiger en fonction de Vbias, ainsi que la plage des tensions de fonctionnement. La comparaison de ces paramètres avec ceux obtenus en mesure AC, et analysés par la procédure automatisée, sont en bonne concordance. La seconde partie de ma thèse a porté sur l’étude de composants SiPM spécialement adaptés à une application biomédicale. Il s’agit d’une sonde intracérébrale, sensible à l’émission β (Nβ) de molécules marquées par un traceur radioactif, injectées dans le cerveau d’un animal vivant. Le but étant de construire un nouveau "modèle animal" de maladies humaines telles que les maladies neuro-dégénératives ou neuropsychiatriques et la croissance de tumeurs. Cette sonde se compose d’un SiPM de très petite taille, bas bruit, couplé à une fibre scintillante, suivie d’une électronique de lecture spécifique, miniaturisée, à faible consommation. Ces SiPM ont été choisis comme les plus adaptés à notre application : deux SiPM de KETEK de 0.5x0.5 mm² (spécialement développés par cette compagnie pour nos besoins), et un SiPM standard de 1.3x1.3 mm² de Hamamatsu, tous ayant des μ-cellules de 50 × 50 μm². Pour chaque composant, les paramètres G, DCR et la sensibilité β ont été mesurés en fonction de Vbias et T. Les résultats obtenus montrent que le faible champ de vue des nouvelles structures KETEK permet une bonne amélioration du DCR. Cependant ce faible champ de vue entraîne une perte de collection de lumière due à l’épaisseur de la couche de résine époxy de protection, et à l’angle d’acceptante de la fibre. Comme la sensibilité β est un compromis entre le PDE et le DCR, les SiPM de KETEK montrent au final des performances voisines de celles de Hamamatsu. Les résultats préliminaires démontrent que la sensibilité β de KETEK peut être améliorée significativement en utilisant une lentille de focalisation entre la fibre scintillante et le SiPM, ou en diminuant l’épaisseur de la couche de résine époxy de protection. / Silicon PhotoMultiplier (SiPM) detector has become a suitable visible light/photon detector for many applications like high energy physics and neutrino experiments, fluorescence detection, bio-photonics and medical imaging. The first part of my thesis was oriented to the studies of SiPM physics parameters as a function of temperature. Particularly, recent KETEK devices (year 2015) with different technological characteristics like p/n and n/p junctions, with and without trench technology, and different widths of epitaxial layer were studied in the temperature range from 308.15 K (+35°C) down to 238.15 K (-35°C). In addition, the Hamamatsu devices from 2011 production run as well as new devices from 2015 year, with improved technological characteristics inducing a reduced noise, were investigated in a wider temperature range from 318.15 K (+45°C) down to 98.15 K (-175°C). For these purposes, I participated to the design, installation, commissioning and calibration of a cryogenic experimental setup dedicated to electrical, optical and temperature studies of SiPM devices. Also, I have developed an automatic analysis procedure able to handle in a short time an impressive quantity of experimental data (i.e. tens of Gb/device) and to give a precise and fast information on main SiPM parameters and their temperature dependence. I have also developed a physical modeldescribing the DC I-V curves of SiPM detectors at different temperatures. The proposed model fits well the shape of IV curve in a very large currents range from 10⁻¹² A up to 10⁻⁵ A over the full working range of various devices. Consequently, the IV model can be used as a simple and fast method for determination of SiPM parameters like breakdown voltage VBD, the shape of Geiger triggering probability PGeiger as a function of Vbias as well as the Vbias working range. The comparison of these parameters with those calculated from AC measurements and analyzed by the automatic procedure showed a good agreement. The second part of my thesis was oriented to the study of SiPM devices and their physical parameters required to build a prototype of betasensitive intracerebral probe. Such probe is dedicated to measure the local concentration of radiolabeled molecules on awake and freely moving animal and to study new animal models of human disorders (neurodegenerative diseases, tumor growth, and neuropsychiatric disorders). It is composed of small size, low-noise SiPM device coupled to a scintillating fiber and readout by a dedicated miniaturized low-power consumption electronics. Three SiPM devices have been chosen as the most adapted for our application: two small KETEK devices of 0.5×0.5 mm² size (with and without optical trenches, specially developed by KETEK to fulfill our requirements) and a standard Hamamatsu device of 1.3×1.3 mm² size, all devices having 50 × 50 μm² μcell size. For each SiPM the gain G, dark count rate DCR and beta sensitivity were measured as a function of Vbias and temperature. The obtained results showed that the small field of view and newly developed structure of the KETEK devices allow a large decrease of the dark count rate DCR. However, this small field of view also leads to a reduced light collection due to the thickness of the epoxy protection resin on top of the SiPM and the acceptance angle of the fiber. Since the beta sensitivity represents a tradeoff between photon detection efficiency PDE and dark count rate DCR, KETEK SiPMs exhibit similar performances in comparison with the Hamamatsu device. Preliminary results demonstrate that the beta sensitivity of KETEK devices can be significantly improved by using focusing lens between the scintillating fiber and the SiPM or by reducing the thickness of its epoxy protection resin.
|
Page generated in 0.248 seconds