• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 1
  • 1
  • Tagged with
  • 13
  • 13
  • 7
  • 7
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Characterization of Stable Delamination Growth in Fiber-reinforced Polymers using Analytical and Numerical approaches

Belay, Tsegay Unknown Date
No description available.
2

Mode Ii Fatigue Crack Growth Behavior And Mode Ii Fracture Toughness Of 7050 Aluminum Alloy In Two Orientations

Yurtoglu, Mine Ender 01 January 2013 (has links) (PDF)
Fatigue crack growth behavior of AA7050 T7451 aluminum alloy under mode II loading condition in two orientations was investigated. Compact shear specimens were prepared in TL and LT directions. A loading frame for mode II type of loading was manufactured. Using the loading frame and the specimen, KIIC values and mode II fatigue crack growth rates were calculated. Fractographic analysis of the fracture surfaces of both mode II fracture toughness test specimens and mode II fatigue crack growth test specimens were done to examine the effects of mode II load. KIIC values were measured between 1.3 and 1.5 times the KIC values for this alloy. As for mode II fatigue crack growth rates, TL orientation shows the highest mode II fatigue crack growth resistance.
3

Interlaminar properties of 3D textile composites

Goktas, Devrim January 2016 (has links)
Multilayer composite materials have a high tendency to interlaminar delamination when they are subjected to out-of-plane loading, because of their low-stiffness in the through-thickness (T-T) direction. The main aim of this research was to improve the interlaminar fracture toughness (IFT) of textile composites by using stitching as a T-T reinforcement technique. The intention was to provide greater delamination resistance and also to enhance the interlaminar fracture toughness between adjacent layers. In this research, E-glass 2x2 twill weave structure fabric layers and an epoxy resin were chosen as the base materials. Three different types of stitching; including the commonly-used modified lock-stitch and orthogonal-stitch (OS) geometries, the single-yarn orthogonal-stitch (SOS) and a newly-developed double-yarn orthogonal-stitch (DOS), as well as five different stitch densities were used to reinforce the multilayer preform lay-ups. The resin infusion moulding method was used to manufacture the E-glass/Epoxy 3D textile composites. The effect of stitched reinforcement on the Mode I-IFT mechanism was examined by performing double cantilever beam (DCB) tests and the Mode II-IFT mechanism by performing four-point bend end-notched flexure (4ENF) tests, respectively. Optical microscopy and scanning electron microscopy (SEM) imaging techniques were used to study the fracture surfaces of the stitched composite specimens, to assess the improvement in IFT mechanisms imparted by the stitched reinforcement used. The effect of stitching was analysed by comparing the various stitching geometries, stitch densities and the mechanical properties highlighted by the Mode I-IFT and Mode II-IFT results. It was found that the use of the novel double-yarn orthogonal-stitch (DOS) reinforcement allied with the use of high stitch densities gave the greatest improvement on both Mode I-IFT and Mode II-IFT tests. Moreover, in every case, the use of DOS and high stitch densities gave a significant improvement of 74.5% in Mode I-IFT and 18.3% for Mode II-IFT tests when compared with unstitched samples. It has been shown that the novel DOS stitch geometry yields significant benefits over established stitching techniques in respect of stitched reinforcement for laminated composite preforms. Besides this, the double column 5x5 mm stitch pattern reveals the highest delamination resistance performance among all the stitching formations tested for Mode I-IFT and II-IFT.
4

SUBCRITICAL CRACK GROWTH UNDER MODE I, II, AND III LOADING FOR COCONINO SANDSTONE

Ko, Tae Young January 2008 (has links)
In systems subjected to long-term loading, subcritical crack growth is the principal mechanism causing the time-dependent deformation and failure of rocks. Subcritical crack growth is environmentally-assisted crack growth, which can allow cracks to grow over a long period of time at stresses far smaller than their failure strength and at tectonic strain rates. The characteristics of subcritical crack growth can be described by a relationship between the stress intensity factor and the crack velocity. This study presents the results of studies conducted to validate the constant stress-rate test for determining subcritical crack growth parameters in Coconino sandstone, compared with the conventional testing method, the double torsion test. The results of the constant stress-rate test are in good agreement with the results of double torsion test. More importantly, the stress-rate tests can determine the parameter A with a much smaller standard deviation than the double torsion test. Thus the constant stress-rate test seems to be both a valid and preferred test method for determining the subcritical crack growth parameters in rocks. We investigated statistical aspects of the constant stress-rate test. The effects of the number of tests conducted on the subcritical crack growth parameters were examined and minimum specimen numbers were determined. The mean and standard deviation of the subcritical crack growth parameters were obtained by randomly selecting subsets from the original strength data. In addition, the distribution form of the subcritical crack growth parameters and the relation between the parameter n and A were determined. We extended the constant stress-rate test technique to modes II and III subcritical crack growth in rocks. The experimental results of the modes I, II and III tests show that the values of the subcritical crack growth parameters are similar to each other. The subcritical crack growth parameter n value for Coconino sandstone has the range of 34 to 38 and the parameter A has the range of 1.02x10⁻² to 6.52x10⁻² m/s. The effect of confining stress, specimen size, and water saturation on subcritical crack growth under mode II loading has also been investigated. Finally strength parameters for Coconino sandstone were determined experimentally, including tensile strength, uniaxial compressive strength, cohesion, internal friction angle, in-plane / our-of-plane shear strength and the fracture toughness under mode I, II, and III loading.
5

Growth of fatigue cracks subjected to non-proportional Mode I and II

Dahlin, Peter January 2005 (has links)
This thesis deals with some aspects of crack growth in the presence of cyclic loading, i.e. fatigue. The cyclic load cases studied here are primary of non-proportional mixed mode type. Under non-proportional loading the principal stress directions rotate and, generally, the ratio between the principal stresses vary. A new criterion has been presented for prediction of incipient crack path direction after changes in load from steady Mode I to non-proportional loading. The criterion is based on FE-simulations which are used to compute the actual elasto-plastic stress state in the vicinity of the crack tip. The predictions of the criterion capture several phenomena observed in the literature, which indicates that plasticity effects have to be included in a criterion for crack path predictions under non-proportional loading. The effects of Mode II overloads on subsequent Mode I crack growth have been studied relatively little in the literature. Also, the results deviates substantially. In the present thesis, this load case has been investigated in detail, both experimentally and analytically. The results show that the Mode I crack growth rate decreases after a single Mode II load, if the R-ratio is not as high as to keep the entire Mode I load cycle above the closure level. This is based on the fact, shown in this thesis, that the reduction is caused by crack closure due to tangential displacement of crack-surface irregularities. A new loading device is presented. With this device, it is possible to apply sequential loading in Mode I and Mode II in an automated way, without having to dismount the specimens. This loading device is used to study the influence of periodic Mode II loading on Mode I crack growth. The main parameters concerning the influence of periodic Mode II loading on Mode I crack growth are; (i) the Mode I R-ratio, (ii) the Mode II magnitude and (iii) the Mode II periodicity, M (number of Mode I loads for every Mode II load). The mechanisms involved are mainly RICC (Roughness-Induced Crack Closure) and a Mode II mechanism that increases the growth rate temporary at every Mode II load. Hence, the latter becomes more significant for low M-values. The higher the Mode I R-ratio the smaller is the reduction. / QC 20101004
6

The Essential Work of Fracture Method Applied to Mode II Interlaminar Fracture in Fiber Reinforced Polymers

McKinney, Scott D Unknown Date
No description available.
7

Impact Resistant Glassy Polymers: Pre-Stress And Mode Ii Fracture

Archer, Jared Steven 01 February 2013 (has links)
Model glassy polymers, polymethyl methacrylate (PMMA) and polycarbonate (PC) are used to experimentally probe several aspects of polymer fracture. In Chapter 1, the method of pre-stress is employed as a means of improving the fracture properites of brittle PMMA. Samples are tested under equi-biaxial compression, simple shear and a combination of biaxial compression and shear. Equi-biaxial compression is shown to increase the threshold stress level for projectile penetration whereas shear pre-stress has a large effect on the overall energy absorbed during an impact. There is also an apparent interaction observed between compression and shear to dramatically increase the threshold stress. Pre-stressed laminates of PMMA and PC show an increase in damage area because of the unique formation of a secondary cone. In Chapter 2, the effect of stress state on stress relaxation in PMMA and PC is investigated. Direct comparisons are made between uniaxial and biaxial loading conditions. The experimental methods used highlight the effect of hydrostatic stress on the relaxation process. The data shows an increase in relaxation time and increase in the breadth of the relaxation spectrum with increases in hydrostatic stress. This suggests that the stress state can have a significant effect on the useful lifetime of pre-stressed articles. In Chapter 3, Mode I and II fracture studies are performed from quasi-static to low velocity impact rates on PMMA and PC. Mode II testing utilizes an angled double-edge notched specimen loaded in compression. The shear banding response of PMMA is shown to be highly sensitive to rate, with diffuse shear bands forming at low rates and sharp distinct shear bands forming at high rates. As the rate increases, shear deformation becomes more localized to the point where Mode II fracture occurs. PC is much less rate dependent and stable shear band propagation is observed over the range of rates studied with lesser amounts of localization. A new theory is formulated relating orientation in a shear band to intrinsic material properties obtained from true-stress true-strain tests. In a qualitative sense the theory predicts the high rate sensitivity of PMMA. A kinematic limit for orientation within a shear band is also derived based on entanglement network parameters. Mode II fracture in PMMA is shown to occur at this kinematic limit. For the case of PC, the maximum impact rates were not high enough to reach the kinematic limit. In Chapter 4, the deformation response, as observed in a shear band is interpreted through the characterization of the "intrinsic material properties" obtained from true stress - true strain 8compression tests. The relatively high rate sensitivity of PMMA deformed at room temperature is related to the proximity of the beta transition to the test temperature. This is also shown in corollary experiments on PC where deformation near the beta transition is accompanied by an increase in rate sensitivity. Physical aging results in a more narrow alpha transition and is shown to increase strain localization and decrease rate sensitivity at low strain rates.
8

Response and Failure of Adhesively Bonded Automotive Composite Structures under Impact Loads

Simon, Joshua Cameron 04 February 2005 (has links)
An experimental technique for conducting low speed impact of adhesively bonded automotive composite joints is presented. Based on the use of a modified drop tower, mode I, II, and mixed mode values for critical energy release rate were determined for a composite/epoxy system and used to create a fracture failure envelope. Because load measurements become erratic and unreliable at higher test rates, displacement-based relationships were used to quantify these energy release rates. Displacement data was collected with an imaging system that utilized edge detection to determine displacement profiles, end displacements, and opening displacements where applicable. Because of the resolution of the image-based approach used, determining crack length experimentally was extremely difficult. As a result, numerical methods were developed to objectively determine the crack length based on the available experimental data in mode I, II, and mixed mode I/II configurations. This numerical method uses a nonlinear fit to determine mode I crack lengths and a theoretical model based on cubic equations for mode II and mixed-mode I/II, where the coefficients of the equations are determined by using both boundary and transition conditions that are a result of the test setup. A double cantilever beam (DCB) geometry was chosen to collect mode I data, an end-loaded split (ELS) geometry was used for mode II, and a single leg bend (SLB) geometry was used for mixed-mode I/II. These geometries were used to determine the fracture characteristics of adhesively bonded automotive composites to create fracture failure envelopes as well as provide mode I, II, and mixed-mode I/II data to be used in finite element models. The chosen adhesive exhibited unstable, stick-slip crack growth, which resulted in very few data points being collected from each static DCB specimen as well as drastic drops in energy release rate between initiation and arrest points. Unstable growth also created issues in dynamic testing, as data points surrounding these "stick-slip" events were lost due to the insufficient sampling rate of the available imaging system. Issues also arose with differences between thick and thin composite adherend specimens. These differences could result from additional curing in thick adherend composite specimens due to the adherends retaining heat. DSC testing was conducted on uncured adhesive using a 2, 5, and 10 minute hold at the cure temperature, and significant additional curing was observed between the two and five minute cures. Due to the difference in relative stiffness between the 12 and 36 ply composite, the local loading rate at the crack tip was lower in the 12 ply adherends, possibly allowing for a larger plastic zone and thus a higher energy release rate. As a result, tests were conducted on 36 ply composite specimens at rates of 1 mm/min and 0.1 mm/min to determine if there were loading rate effects. This testing showed that higher initiation energy relase rates were found at the lower test rate, thus reinforcing the local loading rate theory. Due to issues with plastic deformation in aluminum adherends, mode II and mixed-mode I/II data were collected using only composite adherends. Only one data point was collected per specimen as the crack propagated directly into the composite after initiating from the precrack, thus multiple tests were conducted to collect sufficient data for constructing a failure envelope. Once mode I, II and mixed-mode I/II fracture data was collected, a fracture failure envelope was created. This failure envelope, combined with a predetermined factor of safety, could provide some of the necessary tools for design with this adhesive/composite system. / Master of Science
9

Šíření dlouhých únavových trhlin v austenitické oceli při smykových módech II a III / PROPAGATION OF LONG FATIGUE CRACKS IN AUSTENITIC STEEL UNDER SHEAR MODES II AND III

Holáň, Libor January 2013 (has links)
This work is focused on the realization of experiment allowing simultaneous loading under mode II and III in a single circular specimen. Proposed experiment allowed to minimize crack closure during the cyclic loading and obtained values of thresholds of stress intensity range can be considered to be very close to effective values. This was attained by means of an unique experimental devices and procedure of preparation of pre-crack of specimen with circumferential notch, which was made of stainless austenitic steel. The obtained values were compared with theoretical models with the support of molecular dynamics and ab-anitio calculation. Based on observation was found out, that fatigue crack propagation is controlled by decohesion model in austenitic steel. The morphology of fracture surfaces was studied by means of optical chromatographie and 3D stereophotogrammetry, which allowed a comparison of created morphology under shear modes II and III. Morphology of fracture surface formed (static and cyclic loading) by pre-crack was also studied by means of selected roughness parameters. The mechanism of deflection (kink) of crack growth under mode II was defined.
10

Effects of Voids on Delamination Behavior Under Static and Fatigue Mode I and Mode II

Abdelal, Nisrin Rizek 29 May 2013 (has links)
No description available.

Page generated in 0.0309 seconds