Spelling suggestions: "subject:"model por"" "subject:"model pose""
1 |
Slotted and circular pore surface microfiltrationBromley, Alan J. January 2002 (has links)
The work described by this thesis is a comparison of pore opening geometry for true surface microfilters. True surface microfilters can be thought of as very fine sieves, with pore sizes less than 10 microns. All other types of so-called microfiltration membranes do not rely on sieving, but obtain their pore retention rating by particle collection mechanisms similar to depth filters. Particle deposition within such microfilters results in permeate flow rate dechne, for a fixed pressure filtration, or pressure drop rise, for a fixed rate filtration. The true surface microfilter pore geometnes considered were circular and slotted, and microfilters with filtering dimension of less than 10 microns were used. The slotted pore microfilters are not commercially available and had to be made in the laboratory as part of this study. The technique used was to plate nickel onto an existing substrate, thereby reducing the pore dimension until It was within the microfiltration range. The plating was by electroless nickel solution and not by galvanic means. Significant development of the electroless platmg technique led ultimately to the successful manufacture of process scale slotted surface microfilters.
|
2 |
Écoulements de fluides à seuil en milieux confinés / Flow of yield stress fluids in confined geometriesChevalier, Thibaud 24 October 2013 (has links)
Afin de mieux comprendre les spécificités de l'écoulement des fluides en seuil en géométries confinées, nous avons opté pour une approche multi-échelle expérimentale et/ou numérique dans des milieux poreux complexes et modèles. Nous montrons qu'il est possible d'utiliser la RMN pour visualiser des écoulements de fluides à seuil en géométrie complexe. Dans un milieu poreux, il est également possible de mesurer la distribution statistique des vitesses, ceci sans problème de résolution spatiale, grâce à la méthodologie de réglage d'une expérience d'injection sous IRM que nous avons mise en place. A l'aide de ces techniques, nous montrons que l'écoulement d'un fluide à seuil dans un pore modèle (une expansion-contraction axisymétrique) se localise dans la partie centrale du pore, dans le prolongement du tube d'entrée, tandis que les régions extérieures restent dans le régime solide. Des simulations numériques confirment ces résultats et montrent que la localisation de l'écoulement provient du confinement engendré par la géométrie. A l'inverse, nous montrons que pour un fluide à seuil s'écoulant dans un milieu poreux réel (en trois dimensions), il n'existe pas de zones au repos. De plus, la distribution de vitesse est identique à celle d'un fluide newtonien. Une analyse de ces résultats nous permet de prédire la forme de la loi de Darcy pour les fluides à seuil et de comprendre l'origine physique des paramètres déterminés par des expériences d'injection « macroscopiques » / To better understand the specifics of the flow of yield stress fluids in confined geometries, we opted for a multi-scale experimental and / or numerical approach in complex and model porous media. We show the usefulness of NMR for the study of yield stress fluid's flows in complex geometry. In a porous medium, we can also measure the true probability density function of fluid velocities without spatial resolution problem thanks to a complete optimisation of the design process of a NMR-PGSE experiment. Using these measurement technics, we find that the flow of a yield stress fluid in a model pore (an axisymetric expansion-contraction) is localised in the central part of the pore, i.e. in the continuity of the entry duct, and the external region stay at rest in the solid regime. Numerical simulations confirm those results and point out that the flow localisation is due to the confinement caused by the geometry. On the contrary, no region at rest exists for a yield stress fluid flowing through a real porous media (in 3D). Furthermore, the velocity distribution is the same as a newtonian fluid. The analysis of the results makes it possible to deduce the form of the Darcy's law for yield stress fluids and provides an insight in the physical origin of the coefficients found by “macroscopical” injection experiments
|
Page generated in 0.0381 seconds