• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Quantification of Model-Form, Predictive, and Parametric Uncertainties in Simulation-Based Design

Riley, Matthew E. 07 September 2011 (has links)
No description available.
2

Predictive Turbulence Modeling with Bayesian Inference and Physics-Informed Machine Learning

Wu, Jinlong 25 September 2018 (has links)
Reynolds-Averaged Navier-Stokes (RANS) simulations are widely used for engineering design and analysis involving turbulent flows. In RANS simulations, the Reynolds stress needs closure models and the existing models have large model-form uncertainties. Therefore, the RANS simulations are known to be unreliable in many flows of engineering relevance, including flows with three-dimensional structures, swirl, pressure gradients, or curvature. This lack of accuracy in complex flows has diminished the utility of RANS simulations as a predictive tool for engineering design, analysis, optimization, and reliability assessments. Recently, data-driven methods have emerged as a promising alternative to develop the model of Reynolds stress for RANS simulations. In this dissertation I explore two physics-informed, data-driven frameworks to improve RANS modeled Reynolds stresses. First, a Bayesian inference framework is proposed to quantify and reduce the model-form uncertainty of RANS modeled Reynolds stress by leveraging online sparse measurement data with empirical prior knowledge. Second, a machine-learning-assisted framework is proposed to utilize offline high-fidelity simulation databases. Numerical results show that the data-driven RANS models have better prediction of Reynolds stress and other quantities of interest for several canonical flows. Two metrics are also presented for an a priori assessment of the prediction confidence for the machine-learning-assisted RANS model. The proposed data-driven methods are also applicable to the computational study of other physical systems whose governing equations have some unresolved physics to be modeled. / Ph. D. / Reynolds-Averaged Navier–Stokes (RANS) simulations are widely used for engineering design and analysis involving turbulent flows. In RANS simulations, the Reynolds stress needs closure models and the existing models have large model-form uncertainties. Therefore, the RANS simulations are known to be unreliable in many flows of engineering relevance, including flows with three-dimensional structures, swirl, pressure gradients, or curvature. This lack of accuracy in complex flows has diminished the utility of RANS simulations as a predictive tool for engineering design, analysis, optimization, and reliability assessments. Recently, data-driven methods have emerged as a promising alternative to develop the model of Reynolds stress for RANS simulations. In this dissertation I explore two physics-informed, data-driven frameworks to improve RANS modeled Reynolds stresses. First, a Bayesian inference framework is proposed to quantify and reduce the model-form uncertainty of RANS modeled Reynolds stress by leveraging online sparse measurement data with empirical prior knowledge. Second, a machine-learning-assisted framework is proposed to utilize offline high fidelity simulation databases. Numerical results show that the data-driven RANS models have better prediction of Reynolds stress and other quantities of interest for several canonical flows. Two metrics are also presented for an a priori assessment of the prediction confidence for the machine-learning-assisted RANS model. The proposed data-driven methods are also applicable to the computational study of other physical systems whose governing equations have some unresolved physics to be modeled.
3

Quantification of Multiple Types of Uncertainty in Physics-Based Simulation

Park, Inseok 15 December 2012 (has links)
No description available.
4

Power Electronics Design Methodologies with Parametric and Model-Form Uncertainty Quantification

Rashidi Mehrabadi, Niloofar 27 April 2018 (has links)
Modeling and simulation have become fully ingrained into the set of design and development tools that are broadly used in the field of power electronics. To state simply, they represent the fastest and safest way to study a circuit or system, thus aiding in the research, design, diagnosis, and debugging phases of power converter development. Advances in computing technologies have also enabled the ability to conduct reliability and production yield analyses to ensure that the system performance can meet given requirements despite the presence of inevitable manufacturing variability and variations in the operating conditions. However, the trustworthiness of all the model-based design techniques depends entirely on the accuracy of the simulation models used, which, thus far, has not yet been fully considered. Prior to this research, heuristic safety factors were used to compensate for deviation of real system performance from the predictions made using modeling and simulation. This approach resulted invariably in a more conservative design process. In this research, a modeling and design approach with parametric and model-form uncertainty quantification is formulated to bridge the modeling and simulation accuracy and reliance gaps that have hindered the full exploitation of model-based design techniques. Prior to this research, a few design approaches were developed to account for variability in the design process; these approaches have not shown the capability to be applicable to complex systems. This research, however, demonstrates that the implementation of the proposed modeling approach is able to handle complex power converters and systems. A systematic study for developing a simplified test bed for uncertainty quantification analysis is introduced accordingly. For illustrative purposes, the proposed modeling approach is applied to the switching model of a modular multilevel converter to improve the existing modeling practice and validate the model used in the design of this large-scale power converter. The proposed modeling and design methodology is also extended to design optimization, where a robust multi-objective design and optimization approach with parametric and model form uncertainty quantification is proposed. A sensitivity index is defined accordingly as a quantitative measure of system design robustness, with regards to manufacturing variability and modeling inaccuracies in the design of systems with multiple performance functions. The optimum design solution is realized by exploring the Pareto Front of the enhanced performance space, where the model-form error associated with each design is used to modify the estimated performance measures. The parametric sensitivity of each design point is also considered to discern between cases and help identify the most parametrically-robust of the Pareto-optimal design solutions. To demonstrate the benefits of incorporating uncertainty quantification analysis into the design optimization from a more practical standpoint, a Vienna-type rectifier is used as a case study to compare the theoretical analysis with a comprehensive experimental validation. This research shows that the model-form error and sensitivity of each design point can potentially change the performance space and the resultant Pareto Front. As a result, ignoring these main sources of uncertainty in the design will result in incorrect decision-making and the choice of a design that is not an optimum design solution in practice. / Ph. D. / Modeling and simulation have become fully ingrained into the set of design and development tools that are broadly used in the field of power electronics. To state simply, they represent the fastest and safest way to study a circuit or system, thus aiding in the research, design, diagnosis, and debugging phases of power converter development. Advances in computing technologies have also enabled the ability to conduct reliability and production yield analyses to ensure that the system performance can meet given requirements despite the presence of inevitable manufacturing variability and variations in the operating conditions. However, the trustworthiness of all the model-based design techniques depends entirely on the accuracy of the simulation models used, which has not yet been fully considered. In this research, a modeling and design approach with parametric and model-form uncertainty quantification is formulated to bridge the modeling and simulation accuracy and reliance gaps that have hindered the full exploitation of model-based design techniques. The proposed modeling and design methodology is also extended to design optimization, where a robust multi-objective design and optimization approach with parametric and model-form uncertainty quantification is proposed. A sensitivity index is defined accordingly as a quantitative measure of system design robustness, with regards to manufacturing variability and modeling inaccuracy in the design of systems with multiple performance functions. This research shows that the model-form error and sensitivity of each design point can potentially change the performance space and resultant Pareto Front. As a result, ignoring these main sources of uncertainty in the design will result in incorrect decision making and the choice of a design that is not an optimum design solution in practice.

Page generated in 0.0572 seconds