• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modelagem e controle ótimo de um robô quadrúpede. / Modelling and optimal control of a quadruped robot.

Segundo Potts, Alain 11 November 2011 (has links)
O presente trabalho visa à modelagem e ao controle ótimo de um robô quadrúpede autônomo. Devido a variações na topologia e nos graus de liberdade do robô ao longo do seu movimento, duas abordagens diferentes de modelagem foram consideradas: na primeira, foi considerado o robô com pelo menos duas pernas suportando seu corpo ou plataforma e, na segunda, considerou-se o modelo de uma perna no ar. Em ambos os casos, apresentou-se a solução dos problemas cinemáticos de posição direta e inversa por meio da parametrização de Denavit-Hartenberg. Analisaram-se também os problemas cinemáticos de velocidade e suas singularidades através da Matriz Jacobiana, e ainda obtiveram-se os modelos dinâmicos do sistema utilizando-se o Principio do Trabalho Virtual e o método iterativo de Newton-Euler para a plataforma e as pernas, respectivamente. A partir destes modelos dinâmicos, desenvolveu-se um algoritmo de otimização das perdas de energia elétrica dos motores das juntas. Neste sentido, utilizou-se a estratégia do controle independente por junta. Estratégia esta que, junto com a discretização no tempo do modelo do sistema, permitiu transformar o problema inicial de otimização para cada junta em outro de Programação Quadrática bem mais simples de ser resolvido. Depois de resolver estes problemas, para levar em conta as interações entre as dinâmicas das várias juntas, procedeu-se à busca de um ponto fixo ou mínimo global que caracterizasse a energia total gasta no movimento do sistema. Finalmente, realizada a demonstração e a análise de convergência do algoritmo, este foi testado no controle da andadura (gait) do robô Kamambaré. Como resultado do teste, observou-se o bom desempenho da formulação e a viabilidade de sua implementação em sistemas reais. / The present work aims the modeling and optimal control of an autonomous quadruped robot. Due to variations in the topology and the degree of freedom of the robot during its motion, two different modeling approaches were considered: firstly, the robot was considered with at least two legs supporting its body or platform and, second one, was considered the model of a leg in the air. In both cases, was presented the solution of the direct and inverse kinematic problem of position through the Denavit-Hartenberg parameterization. Were analyzed also, the kinematic problem of speed and the singularities through the Jacobian matrix, and was also obtained the dynamic model of the system using the Principle of Virtual Work or the dAlembert method and the iterative Newton-Euler method for the platform and legs, respectively. From these two dynamic model, were developed an algorithm for optimizing the power losses of the motors that driven the joints. In this sense, was used the strategy of independent control for each joint. Such a strategy, along with the discretization in time of the system model, has helped to change the initial optimization problem for each joint in a Quadratic Programming Problem, more simpler to solve. After solving these problems, and to take into account the interactions between the dynamics of various joints, was proceeded to search for a fixed point or a global minimum that would characterize the total energy spent in moving for the system. Finally, held the demonstration and analysis of convergence of the algorithm was tested in the control of gait of the Kamambaré robot. As a result of the test, we observed the good performance of the formulation and the feasibility of its implementation in real systems.
2

Modelagem e simulação das juntas de um manipulador robótico cilíndrico

Silva Neto, Aurelio Moreira da [UNESP] 16 December 2008 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:28:33Z (GMT). No. of bitstreams: 0 Previous issue date: 2008-12-16Bitstream added on 2014-06-13T20:37:37Z : No. of bitstreams: 1 silvaneto_am_me_guara.pdf: 692597 bytes, checksum: 5f3caf79f195676ad932f7c214821ffc (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / O estudo de um modelo matemático completo, incluindo os servos atuadores, a dinâmica do corpo rígido e o planejamento e geração de trajetórias do manipulador robótico cilíndrico, é um indispensável ponto de partida para aplicações de simulação das juntas e controle de movimentos. As equações cinemáticas obtidas pelas técnicas da Matriz de Transformação Homogênea e Matriz de Transformação Inversa são a solução para a geração de trajetórias, as quais podem ser feitas no espaço cartesiano ou no espaço das juntas e também possibilitam gerar o volume de trabalho do manipulador, que é de grande interesse para a especificação de determinada configuração em aplicações ou tarefas específicas. As equações de movimento foram derivadas usando a formulação Lagrangiana para predizer o comportamento do manipulador quanto à influência da geometria e os parâmetros de massa do manipulador. / The study of a complete mathematical model including the servos actuators, the dynamics of the body rigid and the planning and generation of the manipulator's cylindrical robotic trajectories is an indispensable starting point for applications of simulation of the joints and control of movements. The Kinematic equations obtained by the techniques Homogeneous Transformation Matrix and Inverse Transformation Matrix make is the solution for generation of trajectories that can be done in the cartesian space or in the space of the joints and they also make possible to generate the volume of the manipulator's work that is of great interest for specification certain configuration in applications or specific tasks. The movement equations were derived using the formulation Lagrangiana to predict the manipulator's behavior as for the influence of the geometry and the parameters of the manipulator's mass.
3

Modelagem e controle ótimo de um robô quadrúpede. / Modelling and optimal control of a quadruped robot.

Alain Segundo Potts 11 November 2011 (has links)
O presente trabalho visa à modelagem e ao controle ótimo de um robô quadrúpede autônomo. Devido a variações na topologia e nos graus de liberdade do robô ao longo do seu movimento, duas abordagens diferentes de modelagem foram consideradas: na primeira, foi considerado o robô com pelo menos duas pernas suportando seu corpo ou plataforma e, na segunda, considerou-se o modelo de uma perna no ar. Em ambos os casos, apresentou-se a solução dos problemas cinemáticos de posição direta e inversa por meio da parametrização de Denavit-Hartenberg. Analisaram-se também os problemas cinemáticos de velocidade e suas singularidades através da Matriz Jacobiana, e ainda obtiveram-se os modelos dinâmicos do sistema utilizando-se o Principio do Trabalho Virtual e o método iterativo de Newton-Euler para a plataforma e as pernas, respectivamente. A partir destes modelos dinâmicos, desenvolveu-se um algoritmo de otimização das perdas de energia elétrica dos motores das juntas. Neste sentido, utilizou-se a estratégia do controle independente por junta. Estratégia esta que, junto com a discretização no tempo do modelo do sistema, permitiu transformar o problema inicial de otimização para cada junta em outro de Programação Quadrática bem mais simples de ser resolvido. Depois de resolver estes problemas, para levar em conta as interações entre as dinâmicas das várias juntas, procedeu-se à busca de um ponto fixo ou mínimo global que caracterizasse a energia total gasta no movimento do sistema. Finalmente, realizada a demonstração e a análise de convergência do algoritmo, este foi testado no controle da andadura (gait) do robô Kamambaré. Como resultado do teste, observou-se o bom desempenho da formulação e a viabilidade de sua implementação em sistemas reais. / The present work aims the modeling and optimal control of an autonomous quadruped robot. Due to variations in the topology and the degree of freedom of the robot during its motion, two different modeling approaches were considered: firstly, the robot was considered with at least two legs supporting its body or platform and, second one, was considered the model of a leg in the air. In both cases, was presented the solution of the direct and inverse kinematic problem of position through the Denavit-Hartenberg parameterization. Were analyzed also, the kinematic problem of speed and the singularities through the Jacobian matrix, and was also obtained the dynamic model of the system using the Principle of Virtual Work or the dAlembert method and the iterative Newton-Euler method for the platform and legs, respectively. From these two dynamic model, were developed an algorithm for optimizing the power losses of the motors that driven the joints. In this sense, was used the strategy of independent control for each joint. Such a strategy, along with the discretization in time of the system model, has helped to change the initial optimization problem for each joint in a Quadratic Programming Problem, more simpler to solve. After solving these problems, and to take into account the interactions between the dynamics of various joints, was proceeded to search for a fixed point or a global minimum that would characterize the total energy spent in moving for the system. Finally, held the demonstration and analysis of convergence of the algorithm was tested in the control of gait of the Kamambaré robot. As a result of the test, we observed the good performance of the formulation and the feasibility of its implementation in real systems.

Page generated in 0.0765 seconds