• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Hamiltonian Perturbation Methods for Magnetically Confined Fusion Plasmas / Application de la théorie des perturbations hamiltoniennes pour l'étude de la dynamique des plasmas de fusion

Tronko, Natalia 15 October 2010 (has links)
Les effets auto-consistantes sont omniprésents dans les plasmas de fusion. Ils sont dus au fait que les équations de Maxwell qui décrivent l’évolution des champs électromagnétiques contiennent la densité de charge et de courant des particules.D’autre côté à son tour les trajectoires des particules sont influencés par les champs à travers les équations de mouvement ( où l’équation de Vlasov). Le résultat decette interaction auto-consistente se résume dans un effet cumulatif qui peut causer le déconfinement de plasma à l’intérieur d’une machine de fusion. Ce travail de thèse traite les problèmes liés à l’amélioration de confinement de plasma de fusion dans le cadre des approches hamiltonienne et lagrangien par le contrôle de transport turbulent et la création des barrières de transport. Les fluctuations auto-consistantes de champs électromagnétiques et de densités des particules sont à l’origine de l’apparition des instabilités de plasma qui sont à son tour liés aux phénomènes de transport. Dans la perspective de comprendre les mécanismes de la turbulence sousjacente,on considère ici l’application des méthodes hamiltoniennes pour des plasmasnon-collisionnelles / This thesis deals with dynamicla investigation of magnetically confined fusion plasmas by using Lagrangian and Hamilton formalisms. It consists of three parts. The first part is devoted to the investigation of barrier formation for the EXB drift model by means of the Hamiltonian control method. The strong magnetic field approach is relevant for magnetically confined fusion plasmas ; this is why at the first approximation one can consider the dynamics of particles driven by constant and uniform magnetic field. In this case only the electrostatic turbulence is taken into account. During this study the expressions for the control term (quadratic in perturbation amplitude) additive to the electrostatic potential, has been obtained. The effeciency of such a control for stopping turbulent diffusion has been shown analytically abd numerically. The second and the third parts of this thesis are devoted to study of self consistent phenomena in magnetized plasmas through the Maxwell-Vlasov model. In particular, the second part of this thesis treats the problem of the monumentum transport by derivation of its conservation law. the Euler-Poincare variational principle (with constrained variations) as well as Noether's theorem is apllied here. this derivation is realized in two cases : first, in electromagnetic turbulence case for the full Maxwell-Vlasov system, and then in electrostatic turbulence case for the gyrokinetic Maxwell-Vlasov system. Then the intrinsic mechanisms reponsible for the intrinsic plama rotation, that can give an important in plasma stabilization, are identified. The last part of this thesis deals with dynamicla reduction for the Maxwell-Vlaslov model. More particularly; the intrisic formulation for the guiding center model is derived. Here the term 'intrinsis" means that no fixed frame was used during its construction. Due to that not any problem related to the gyrogauge dependence of dynamics appears. The study of orbits of trapped particles is considered as one of the possible for illustration of the first step of such a dynamical reduction.

Page generated in 0.0665 seconds