• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mathematical Analysis of Planar Solid Oxide Fuel Cells

Pramuanjaroenkij, Anchasa 13 May 2009 (has links)
The mathematical analysis has been developed by using finite volume method, experimental data from literatures, and solving numerically to predict solid oxide fuel cell performances with different operating conditions and different material properties. The in-house program presents flow fields, temperature distributions, and performance predictions of typical solid oxide fuel cells operating at different temperatures, 1000 C, 800 C, 600 C, and 500 C, and different electrolyte materials, Yttria-Stabilized zirconia (YSZ) and Gadolinia-doped ceria (CGO). From performance predictions show that the performance of an anode-supported planar SOFC is better than that of an electrolyte-supported planar SOFC for the same material used, same electrode electrochemical considerations, and same operating conditions. The anode-supported solid oxide fuel cells can be used to give the high power density in the higher current density range than the electrolyte-supported solid oxide fuel cells. Even though the electrolyte-supported solid oxide fuel cells give the lower power density and can operate in the lower current density range but they can be used as a small power generator which is portable and provide low power. Furthermore, it is shown that the effect of the electrolyte materials plays important roles to the performance predictions. This should be noted that performance comparisons are obtained by using the same electrode materials. The YSZ-electrolyte solid oxide fuel cells in this work show higher performance than the CGO-electrolyte solid oxide fuel cells when SOFCs operate above 756 C. On the other hand, when CGO based SOFCs operate under 756 C, they shows higher performance than YSZ based SOFCs because the conductivity values of CGO are higher than that of YSZ temperatures lower than 756 C. Since the CGO conductivity in this work is high and the effects of different electrode materials, they can be implied that conductivity values of electrolyte and electrode materials have to be improved.
2

Solar And Fuel Cell Circuit Modeling, Analysis And Integrations With Power Conversion Circuits For Distributed Generation

Krishnamurthy, Smitha 01 January 2009 (has links)
Renewable energy is considered to be one of the most promising alternatives for the growing energy demand in response to depletion of fossil fuels and undesired global warming issue. With such perspective, Solar Cells and Fuel Cells are most viable, environmentally sound, and sustainable energy sources for power generation. Solar and Fuel cells have created great interests in modern applications including distributed energy generation to provide clean energy. The purpose of this thesis was to perform a detailed analysis and modeling of Solar and Fuel cells using Cadence SPICE, and to investigate dynamic interactions between the modules and power conversion circuits. Equivalent electronic static and dynamic models for Solar and Fuel Cells, their electrical characteristics, and typical power loss mechanisms associated with them are demonstrated with simulation results. Power conversion circuits for integration with the dynamic models of these renewable low voltage sources are specifically chosen to boost and regulate the input low dc voltage from the modules. The scope of this work was to analyze and model solar and fuel cells to study their terminal characteristics, power loss mechanisms, modules and their dynamics when interfaced with power converters, which would lead to better understanding of these renewable sources in power applications.

Page generated in 0.1199 seconds