• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Etude expérimentale et modélisation cinétique de l'oxydation, l'auto-inflammation et la combustion de carburants Diesel et bio-Diesel / Expérimental and et modeling study of the kinetics of oxidation, ignition and combustion of Diesel and biodiesel fuels

Ramirez Lancheros, Helena 27 January 2012 (has links)
L'oxydation d'un gazole commercial et d’un gazole modèle (70% n-décane/30% 1-méthylnaphtalène en mol), ainsi que l’oxydation d’un carburant B30 « réel » (30% EMHV en vol.) et d’un B30 modèle (49% de n-décane, 21% de 1-méthylnaphtalène et 30% d'octanoate de méthyle en mole), a été étudiée dans un réacteur auto-agité par jets gazeux, un tube à choc et une bombe sphérique. Les études ont été effectuées dans un réacteur auto-agité en silice fondue, dans les mêmes conditions expérimentales initiales (560-1030 K, à 6 et 10 bar, à des richesses allant de 0,25 à 1,5). Les résultats de cette série d'expériences sont constitués de profils de concentration des espèces intermédiaires stables et des produits de combustion mesurés en fonction de la température, après prélèvement à basse pression par une sonde sonique, par infrarouge et par chromatographie en phase gazeuse. Les résultats obtenus avec les « carburants réels » ainsi qu’avec les carburants modèles (gazole et B30) ont été comparés, montrant que les carburants modèles sont d’excellents substituts simplifiés pour les « carburants réels » gazole et B30. Nous avons mesuré des délais d’auto-inflammation du carburant modèle B30 dans un tube à choc à haute pression dans une large gamme de conditions expérimentales (20 et 40 bar, intervalle de richesse de 0.5 à 1.5, et températures allant de 700 à 1200 K). Les vitesses fondamentales de flammes de 1-méthylnaphtalène, de l’octanoate de méthyle, et des carburants modèles gazole et B30 ont été mesurées dans une bombe sphérique, sous différentes conditions expérimentales (une pression initiale de 1 et 4 bar, une température initiale de 423K et une large gamme de richesses). Un mécanisme détaillé a été développé, validé, puis été réduit. Il prédit raisonnablement les données expérimentales obtenues en bombe sphérique dans cette étude. / The oxidation of a commercial Diesel fuel and a Diesel surrogate fuel (70% n-decane/30% 1-methylnaphthalene in mole), a commercial B30 biodiesel fuel (30% FAME by vol.), and a B30biodiesel surrogate fuel (49% n-decane, 21% 1-methylnaphthalene and 30% methyl octanoate, inmole) was studied using a jet-stirred reactor, a shock tube, and a spherical bomb. Experiments were performed in a fused-silica jet-stirred reactor under the same initial conditions (560–1030 K, 6 and 10 bar, equivalence ratios of 0.25–1.5). The results of this series of experiments consisted of concentration profiles of reactants, stable intermediates and products measured as a function of temperature by low-pressure probe sampling followed by Fourier transform infrared absorption spectrometry and gas chromatography analyses. The results obtained with the commercial and surrogate mixtures (diesel and B30 fuel) were compared with each other, showing that the fuel surrogates are excellent and simple fuel representatives. Ignition delay times of B30 surrogate fuels were measured in a high-pressure shock tube over a wide range of experimental conditions (pressures of 20 and 40 bar, equivalence ratios in the range 0.5–1.5, and temperatures ranging from 700 to 1200 K). Laminar flame speeds of 1-methylnaphthalene, methyl octanoate, Diesel surrogate (70% n-decane and 21% 1-methylnaphthalene in mole) and a B30 bio-Diesel surrogate have been investigated in a stainless steel spherical bomb under different experimental conditions (pressures of 1 and 4 bar, a temperature of 423K and a wide equivalence ratios range). A detailed chemical kinetic mechanism was developed, validated and reduced. It predicts reasonably well the present experimental result.
2

Evaluating Changes to Natural Variability on a Warming Globe in CMIP5 Models

Vazquez, Heather 22 June 2018 (has links)
Global mean surface temperatures (GMST) warmed in the early 20th century, experienced a mid-century lull, and warmed again steadily until 1997. Observations at the turn of the 21st century have revealed another period of quiescent warming of GMSTs from 1998 to 2012, thus prompting the notion of a global warming “hiatus”. The warming hiatus occurred concurrently with steadily increasing atmospheric greenhouse gas concentrations, sea level rise, and retreating arctic sea ice. The occurrence of the warming hiatus suggests that natural variability continues to be a sizable contributor to modern climate change and implies that energy is rearranged or changed within the climate system. Much of the scientific research conducted over the last decade has attempted to identify which modes of natural variability may be contributing to the GMST signal in the presence of anthropogenic warming. Many of these studies concluded that natural variability, operating in the global oceans were the largest contributors to GMST. What remains unclear is how oceanic variability and its contribution to GMST may change on a warmer globe as greenhouse gas concentrations continue to rise. Our research includes diagnostic analyses of the available observational surface temperature estimates and novel state-of-the-art climate model experiments from the fifth phase of the Coupled Model Intercomparison Project (CMIP5). Our analyses seek to understand how the natural modes of variability within the ocean will change under different warming scenarios. Utilizing simulations forced with observed pre-industrial and historical greenhouse gas emissions in combination with several future warming simulations, we quantify the probability of similar “hiatus-like” periods occurring on a warmer globe. To that end employ various metrics and detrending techniques including EOF decomposition, running climatologies, along with linear and nonlinear trends to elucidate how natural variability changes over time. We also examine the changing influence of natural modes of variability with respect to the anthropogenic radiative forcing over different regions on the globe.Results suggest that natural variability for much of the global oceans decreases as the radiative forcing increases in the future warming scenarios.
3

Strukturní studie mutantní varianty halogenalkandehalogenasy DhaA106 / Structural studies of mutant variants haloalkanedehalogenase DhaA106

MALCHER, Pavel January 2015 (has links)
The aim of the thesis was to compare the haloalkane dehalogenase DhaA106 with other studied protein mutant variants. For diffraction analysis, it was necessary to growappropriate crystals of DhaA106 protein. Crystallization experiments were performed by standard sitting drop method. Obtained rod crystals were used for diffraction analysis. During diffraction measurement completeset of 500 diffraction images were obtained, from which the electron density map was formed and the spatial model of the molecular structure of DhaA106 dehalogenase was created. Alternative conformation of amino acids, water molecules, parts of precipitating solution and chloride ion inthe active sitewere subsequently added into the model structure. The final structure of the moleculewas refined and validated. Subsequently, the amino acids pentade in the active site and whole protein structure were analyzed . Values of validation and refining and interatomic distances in the active site were compared with several variants mutant dehalogenase DhaA, as well as the precipitating solutions used for crystallization and diffraction data collection. In the last step of the work interactions of the selected substrate with the protein surface in the vicinity of the tunnel connecting the active site of the surfacewere studied. Mentioned interaction study was based on the principle of combination of the Monte-Carlo methods with protein structure prediction algorithms.
4

Thesis_Mann_Final.pdf

Thomas R Mann (15348394) 26 April 2023 (has links)
<p>Ni-base superalloys are among the highest temperature capable alloys and are used pervasively throughout the transportation, energy, and nuclear industries. However, their microstructures have been largely limited to containing the γ´ (cubic) and γ´´ (tetragonal) phases to enable high strength at elevated temperatures, and this fixation has restricted alloy development opportunities. In the past three decades, a new set of alloys, strengthened by the γ´´´ (orthorhombic) phase, was developed by Haynes International. The alloys exhibit comparable strength to existing Ni-based superalloys and show a 25% decrease in the thermal expansion coefficient, designed for tighter clearances (thus improving engine efficiency) and help to reduce thermally induced fatigue from engine cycling. </p> <p>The newest iteration of such alloys, HAYNES<sup>®</sup> 244<sup>®</sup>, has a nominal composition of Ni-22.5Mo-8Cr-6W (wt.%), and each alloying element is used to help precipitate the γ´´´-Ni<sub>2</sub>(Cr, Mo, W) phase. The deformation mechanisms of this material are currently unknown. Previous studies investigating the predecessor alloy, HAYNES<sup>®</sup> 242<sup>®</sup> alloy, showed deformation twinning to be the dominant deformation mechanism during mechanical testing, but the physical phenomena responsible for this mode of deformation were not clearly elucidated. As a result, the primary motivation of this project is to understand the deformation behavior of the 244 alloy from the atomistic level and upwards. </p> <p>This work details efforts to elucidate these deformation mechanisms using an integrated computational and experimental approach. First-principles calculations were performed to determine the entire generalized stacking fault energy (GSFE) surface and slip pathways of the γ´´´ phase for dislocation slip. The various planar defects that could form from dislocation slip were predicted to provide significant barriers for dislocation motion due to their very high planar defect energies (~1000 mJ/m<sup>2</sup>), likely precluding shearing of the precipitates. We incorporated these results into phase field dislocation dynamics (PFDD) to simulate dislocation-precipitate interactions of finite size. These results showed that the planar defect energies of the γ´´´ phase largely govern the deformation behavior and critical resolved shear stress for precipitate shearing, regardless of precipitate shape, size, or orientation. Extensive mechanical testing conducted from room temperature up to 760 ºC over strain rates ranging from 10<sup>-9</sup> s<sup>-1</sup> to 10<sup>-4</sup> s<sup>-1</sup> combined with transmission electron microscopy validated the predicted deformation structures of creep and tensile samples. Shearing of individual precipitates by intrinsic and extrinsic stacking faults, as well as extensive deforming twinning, was observed. The integrated GSFE and PFDD simulations showed that the precipitates would resist dislocation shearing and favor twinning as the preferred deformation mechanism at all temperatures and strain rates investigated. These results provide pathways for microstructural and composition modification to further increase the strength of γ´´´ strengthened alloys in the future.</p> <p><br></p>

Page generated in 0.0774 seconds