Spelling suggestions: "subject:"modelo dde plume papel"" "subject:"modelo dde plume capel""
1 |
Algoritmos de Cluster e Percolação / Cluster Algorithms PercolationBouabci, Mauricio Borges 03 March 1998 (has links)
O objetivo principal deste trabalho é o de investigar relações entre mapeamentos de modelos de spin em modelos de percolação e a existência de algoritmos de cluster capazes de simular de forma eficiente o modelo. Apresentamos um mapeamento do modelo de Blume-Capel em um modelo de percolação que permite reobter um algoritmo proposto anteriormente por nós através de uma prova de balanço detalhado, o que abre a possibilidade de descrevermos todo o diagrama de fases do modelo em termos de propriedades dos clusters formados. Isto é particularmente interessante, já que o modelo possui um ponto tricrítico, nunca antes analisado em termos de propriedades de percolação. Encontramos também um mapeamento para o modelo de Ashkin-Teller, e através dos algoritmos de cluster resultantes investigamos a possibilidade de existência de uma fase de Baxter Assimétrica. Analisamos também questões relacionadas ao comportamento de tamanho finito de sistemas que apresentam transições de fase de primeira ordem assimétricas. Finalmente, o algoritmo de cluster desenvolvido para o modelo de Blume-CapeI é também generalizado: de forma a podermos aplicá-lo ao estudo do modelo de Blume-Emery-Griffiths. / The main goal of this work is to investigate relations between mappings of spin models into percolation models and the possibility of devising an efficient cluster algorithm to simulate the model. We present a mapping of the Blume-Capel model into a percolation model that results in a cluster algorithm proposed previously by us through a detailed balance proof, enabling us to describe the whole phase-diagram in terms of cluster properties. This is particularly appealing, since the model has a tricritical point, a feature not yet analysed in terms of percolation properties. We present also a mapping for the Ashkin-Teller model, and using the obtained cluster algorithms we analyse the possibility of existence of the Asymmetric Baxter phase. We also address questions related to the finite-size behavior of systems in asymmetric first-order phase transitions. Finally, the cluster algorithm developed for the Blume-Capel model is generalized to the study of the Blume-Emery-Griffiths model.
|
2 |
Algoritmos de Cluster e Percolação / Cluster Algorithms PercolationMauricio Borges Bouabci 03 March 1998 (has links)
O objetivo principal deste trabalho é o de investigar relações entre mapeamentos de modelos de spin em modelos de percolação e a existência de algoritmos de cluster capazes de simular de forma eficiente o modelo. Apresentamos um mapeamento do modelo de Blume-Capel em um modelo de percolação que permite reobter um algoritmo proposto anteriormente por nós através de uma prova de balanço detalhado, o que abre a possibilidade de descrevermos todo o diagrama de fases do modelo em termos de propriedades dos clusters formados. Isto é particularmente interessante, já que o modelo possui um ponto tricrítico, nunca antes analisado em termos de propriedades de percolação. Encontramos também um mapeamento para o modelo de Ashkin-Teller, e através dos algoritmos de cluster resultantes investigamos a possibilidade de existência de uma fase de Baxter Assimétrica. Analisamos também questões relacionadas ao comportamento de tamanho finito de sistemas que apresentam transições de fase de primeira ordem assimétricas. Finalmente, o algoritmo de cluster desenvolvido para o modelo de Blume-CapeI é também generalizado: de forma a podermos aplicá-lo ao estudo do modelo de Blume-Emery-Griffiths. / The main goal of this work is to investigate relations between mappings of spin models into percolation models and the possibility of devising an efficient cluster algorithm to simulate the model. We present a mapping of the Blume-Capel model into a percolation model that results in a cluster algorithm proposed previously by us through a detailed balance proof, enabling us to describe the whole phase-diagram in terms of cluster properties. This is particularly appealing, since the model has a tricritical point, a feature not yet analysed in terms of percolation properties. We present also a mapping for the Ashkin-Teller model, and using the obtained cluster algorithms we analyse the possibility of existence of the Asymmetric Baxter phase. We also address questions related to the finite-size behavior of systems in asymmetric first-order phase transitions. Finally, the cluster algorithm developed for the Blume-Capel model is generalized to the study of the Blume-Emery-Griffiths model.
|
3 |
Um Estudo do Método de Monte Carlo de Campo Médio / A study of the method of Monte-Carlo mean fieldHenriques, Eduardo Fontes 18 December 1992 (has links)
Utilizamos o método de Monte-Carlo de campo médio, proposto por Netz e Berker, para estudar o comportamento termodinâmico dos modelos de Ising e de Blume-Capel numa rede quadrada. Esse método mistura conceitos de amostragem aleatória (Monte Carlo) com equações de campo médio usual. Seus autores afirmam que o método pode permitir representações de diagramas de fase com amostragens muito menores do que as usadas nas simulações de Monte Carlo convencionais e com a eliminação de certas consequências indesejáveis da aplicação das equações de consistência de campo médio. Entretanto, não observamos, pelo menos nos modelos que foram estudados, uma tendência clara de redução de amostragens (número de passos de Monte Carlo) em relação a simulações computacionais pelos métodos conhecidos. Além disso, os nossos cálculos apontam na direção de uma grande semelhança com os resultados usuais de uma aproximação de Bethe-Peierls. Esses problemas devem ser somados ao fato de não haver uma boa explicação para o mecanismo do método de Netz e Berker, dada a dificuldade de estudar a dinâmica em que ele se baseia. / We have used the method of Monte Carlo Mean Field, recently proposed by Netz and Berker, to study the thermodynamic behavior of the Ising and Blume-Capel models on square lattices. This method merges concepts of stochastic sampling (Monte Carlo) with the usual mean-field equations. Their authors claim that the method permits representations of phase diagrams with much less samplings than those used in conventional Monte Carlo simulations, eliminating also certain undesirable consequences of the application of the mean - field consistency equations. However, we haven\'t observed, at least in the models we have studied, a clear tendency of a reduction of the samplings (number of Monte Carlo steps) compared with computational simulations by other known methods. Also, our calculations point to great resemblances with usual results given by Bethe-Peierls approximations. To these problems, we must add the fact that there is no good explanation for the machinery of Netz and Berker\'s method, given the difficulty of studying the stochastic dynamics on wich is based.
|
4 |
Um Estudo do Método de Monte Carlo de Campo Médio / A study of the method of Monte-Carlo mean fieldEduardo Fontes Henriques 18 December 1992 (has links)
Utilizamos o método de Monte-Carlo de campo médio, proposto por Netz e Berker, para estudar o comportamento termodinâmico dos modelos de Ising e de Blume-Capel numa rede quadrada. Esse método mistura conceitos de amostragem aleatória (Monte Carlo) com equações de campo médio usual. Seus autores afirmam que o método pode permitir representações de diagramas de fase com amostragens muito menores do que as usadas nas simulações de Monte Carlo convencionais e com a eliminação de certas consequências indesejáveis da aplicação das equações de consistência de campo médio. Entretanto, não observamos, pelo menos nos modelos que foram estudados, uma tendência clara de redução de amostragens (número de passos de Monte Carlo) em relação a simulações computacionais pelos métodos conhecidos. Além disso, os nossos cálculos apontam na direção de uma grande semelhança com os resultados usuais de uma aproximação de Bethe-Peierls. Esses problemas devem ser somados ao fato de não haver uma boa explicação para o mecanismo do método de Netz e Berker, dada a dificuldade de estudar a dinâmica em que ele se baseia. / We have used the method of Monte Carlo Mean Field, recently proposed by Netz and Berker, to study the thermodynamic behavior of the Ising and Blume-Capel models on square lattices. This method merges concepts of stochastic sampling (Monte Carlo) with the usual mean-field equations. Their authors claim that the method permits representations of phase diagrams with much less samplings than those used in conventional Monte Carlo simulations, eliminating also certain undesirable consequences of the application of the mean - field consistency equations. However, we haven\'t observed, at least in the models we have studied, a clear tendency of a reduction of the samplings (number of Monte Carlo steps) compared with computational simulations by other known methods. Also, our calculations point to great resemblances with usual results given by Bethe-Peierls approximations. To these problems, we must add the fact that there is no good explanation for the machinery of Netz and Berker\'s method, given the difficulty of studying the stochastic dynamics on wich is based.
|
Page generated in 0.076 seconds