• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Técnicas de otimização em alinhamentos múltiplos de sequência via Cadeias de Markov / Optimization techniques for multiple sequence alignments by Markov Chains

Nóbrega, Juliano Farias da [UNESP] 29 February 2016 (has links)
Submitted by Juliano Farias da Nobrega null (juliano@e8.com.br) on 2016-04-13T15:21:20Z No. of bitstreams: 1 dissert_juliano_unesp.pdf: 1652677 bytes, checksum: 2d05540d73450af0ce70d07689eeac2a (MD5) / Rejected by Felipe Augusto Arakaki (arakaki@reitoria.unesp.br), reason: Solicitamos que realize uma nova submissão seguindo as orientações abaixo: O arquivo submetido está sem a ficha catalográfica. A versão submetida por você é considerada a versão final da dissertação/tese, portanto não poderá ocorrer qualquer alteração em seu conteúdo após a aprovação. Corrija esta informação e realize uma nova submissão contendo o arquivo correto. Agradecemos a compreensão. on 2016-04-14T20:43:40Z (GMT) / Submitted by Juliano Farias da Nobrega null (juliano@e8.com.br) on 2016-04-15T13:45:15Z No. of bitstreams: 1 Dissertacao_Juliano_Unesp.pdf: 1798501 bytes, checksum: 97b5fd5aa56bbac1dd28b2e73b516bd4 (MD5) / Approved for entry into archive by Ana Paula Grisoto (grisotoana@reitoria.unesp.br) on 2016-04-18T13:22:17Z (GMT) No. of bitstreams: 1 nobrega_jf_me_sjrp.pdf: 1798501 bytes, checksum: 97b5fd5aa56bbac1dd28b2e73b516bd4 (MD5) / Made available in DSpace on 2016-04-18T13:22:17Z (GMT). No. of bitstreams: 1 nobrega_jf_me_sjrp.pdf: 1798501 bytes, checksum: 97b5fd5aa56bbac1dd28b2e73b516bd4 (MD5) Previous issue date: 2016-02-29 / Recentemente, a bioinformática tornou-se um recurso imprescindível para a análise e interpretação da grande quantidade de informação biológica gerada pela biologia molecular e pelos sequenciadores de última geração. O processo de comparação dessas biossequências é o ponto de partida para o estudo da evolução e diferenciação dos organismos vivos, além de ser uma das tarefas mais importantes na biologia computacional. Neste trabalho apresenta-se uma abordagem baseada na heurística de Cadeias de Markov para otimização de um algoritmo de alinhamento múltiplo de sequências biológicas, proporcionando resultados com mais qualidade e sem o comprometimento do desempenho da ferramenta MUSCLE, escolhida para dar suporte ao trabalho. As cadeias de Markov foram escolhidas como técnica de otimização devido sua eficiente aplicabilidade em diversos problemas, sobretudo na biologia computacional, pois sua metodologia probabilística torna a aplicação computacionalmente viável, contornando os problemas NP-difícil e apresentando resultados significamente precisos. / Recently, bioinformatics has become an indispensable tool for analyzing and interpreting large amounts of information biological generated by molecular biology and the next-generation sequencers. The comparison process these sequences is the starting point for the study of evolution and differentiation of living organisms as well as being one of the most important tasks in computational biology. This work presents an approach based on Markov chains heuristics for optimization of a multiple alignment algorithm of biological sequences, provides improved quality results and without compromising the performance of MUSCLE tool chosen to support the work.. Markov chains were chosen as optimization technique due to its efficient applicability in various other problems, especially in computational biology, as its probabilistic methodology makes applying computationally feasible, bypassing the NP-hard problems and stating significantly accurate results.

Page generated in 0.0626 seconds