• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

MMRecommender: arquitetura aberta para sistemas de recomendação

Silva, Leandro Simões da 01 September 2017 (has links)
Submitted by Renata Lopes (renatasil82@gmail.com) on 2017-11-07T12:44:52Z No. of bitstreams: 1 leandrosimoesdasilva.pdf: 2246306 bytes, checksum: 62b13cb16a4ded100e15966fba624bc5 (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2017-11-09T14:37:32Z (GMT) No. of bitstreams: 1 leandrosimoesdasilva.pdf: 2246306 bytes, checksum: 62b13cb16a4ded100e15966fba624bc5 (MD5) / Made available in DSpace on 2017-11-09T14:37:32Z (GMT). No. of bitstreams: 1 leandrosimoesdasilva.pdf: 2246306 bytes, checksum: 62b13cb16a4ded100e15966fba624bc5 (MD5) Previous issue date: 2017-09-01 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Sistemas de Recomendação podem ser definidos como sistemas capazes de recomendar recursos aderentes ao perfil e contexto do usuário ou grupo de usuários, podendo ser aplicados em diversos domínios, tais como educação, turismo e e-Science. Devido a esta característica adaptável é possível encontrar diversos modelos de recomendação na literatura, cada um com combinações de métodos e algoritmos distintos. Essa variedade de modelos de recomendação pode dificultar o processo de implementação de Sistemas de Recomendação. Neste cenário, a presente dissertação apresenta a arquitetura aberta MMRecommender, onde através da combinação de componentes presentes em cada etapa é possível instanciar modelos de recomendação que podem ser aplicados a diversos domínios. Para avaliar a arquitetura são apresentados três estudos de casos sob perspectivas diferentes: o primeiro estudo de caso foca na adaptação de um Sistema de Recomendação existente para a arquitetura MMRecommender, o segundo estudo de caso implementa um modelo de recomendação criado a partir da arquitetura proposta em um ecossistema de software científico, e, por último, um estudo de caso evidenciando como a arquitetura proposta viabilizou a implementação de um Sistema de Recomendação turístico utilizado nas olimpíadas RIO 2016. Após a avaliação de cada estudo de caso foram obtidos indícios de que a arquitetura proposta pode auxiliar na construção de modelos de recomendação. / Recommender Systems can be defined as systems capable of recommending resources adhering to user or group of user’s profile and context, and can be applied in several domains, such as education, tourism and e-science. Due to this adaptive feature, it is possible to find several recommender models in the literature, each with combinations of different methods and algorithms. This variety of recommendation models can make it difficult to implement Recommender Systems. In this scenario, the present dissertation presents an open architecture MMRecommender, where through the combination of components present in each step it is possible to instantiate recommender models that can be applied to several application domains. To evaluate the architecture, three case studies are presented under different perspectives: the first case study focuses on the adaptation of an existing Recommender System to the MMRecommender architecture, the second case study implements a recommender model created from the proposed architecture in a scientific software ecosystem, and finally a case study evidences how the proposed architecture made possible the implementation of a Tourist Recommender System used in the RIO 2016 Olympic Games. After evaluating each case study it was possible to identify indications that the proposed architecture can help in the construction of recommender models.

Page generated in 0.0795 seconds