• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Estima??o em modelos de tempo de falha acelerado para dados de sobreviv?ncia correlacionados

Santos, Patr?cia Borchardt 01 December 2009 (has links)
Made available in DSpace on 2014-12-17T15:26:38Z (GMT). No. of bitstreams: 1 Patricia Borchardt Santos.pdf: 378137 bytes, checksum: e27ccc5c056aa17d7bd2ca2c8b64458f (MD5) Previous issue date: 2009-12-01 / We presented in this work two methods of estimation for accelerated failure time models with random e_ects to process grouped survival data. The _rst method, which is implemented in software SAS, by NLMIXED procedure, uses an adapted Gauss-Hermite quadrature to determine marginalized likelihood. The second method, implemented in the free software R, is based on the method of penalized likelihood to estimate the parameters of the model. In the _rst case we describe the main theoretical aspects and, in the second, we briey presented the approach adopted with a simulation study to investigate the performance of the method. We realized implement the models using actual data on the time of operation of oil wells from the Potiguar Basin (RN / CE). / Apresentamos neste trabalho dois m?todos de estima??o para modelos de tempo de falha acelerado com efeito aleat?rio para tratar de dados de sobreviv?ncia correlacionados. O primeiro m?todo, que est? implementado no software SAS, atrav?s do procedimento NLMIXED, utiliza a quadratura Gauss-Hermite adaptada para obter a verossimilhan?a marginalizada. O segundo m?todo, implementado no software livre R, est? baseado no m?todo da verossimilhan?a penalizada para estimar os par?metros do modelo. No primeiro caso descrevemos os principais aspectos te?ricos e, no segundo, apresentamos brevemente a abordagem adotada juntamente com um estudo de simula??o para investigar a performance do m?todo. Realizamos uma aplica??o dos modelos usando dados reais sobre o tempo de funcionamento de po?os petrol?feros da Bacia Potiguar (RN/CE).

Page generated in 0.1353 seconds