• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Diversity of Processing Units: An Attempt to Classify the Plethora of Modern Processing Units

Wolfgang, Lehner, Ungethüm, Annett, Habich, Dirk 16 June 2023 (has links)
Recent hardware developments are providing a plethora of alternatives to well-known general-purpose processing units. This development reaches into all major directions, i.e., into high-speed and low latency communications systems, novel memory components as well as a zoo of different processing units in addition to the traditional CPU-style processors. While all developments have great impact on the design of database systems, we will try—in the context of this Kurz Erklärt—to categorize recent advances in the context of processing units and comment on the impact on database systems.
2

Efficient Processing of Range Queries in Main Memory

Sprenger, Stefan 11 March 2019 (has links)
Datenbanksysteme verwenden Indexstrukturen, um Suchanfragen zu beschleunigen. Im Laufe der letzten Jahre haben Forscher verschiedene Ansätze zur Indexierung von Datenbanktabellen im Hauptspeicher entworfen. Hauptspeicherindexstrukturen versuchen möglichst häufig Daten zu verwenden, die bereits im Zwischenspeicher der CPU vorrätig sind, anstatt, wie bei traditionellen Datenbanksystemen, die Zugriffe auf den externen Speicher zu optimieren. Die meisten vorgeschlagenen Indexstrukturen für den Hauptspeicher beschränken sich jedoch auf Punktabfragen und vernachlässigen die ebenso wichtigen Bereichsabfragen, die in zahlreichen Anwendungen, wie in der Analyse von Genomdaten, Sensornetzwerken, oder analytischen Datenbanksystemen, zum Einsatz kommen. Diese Dissertation verfolgt als Hauptziel die Fähigkeiten von modernen Hauptspeicherdatenbanksystemen im Ausführen von Bereichsabfragen zu verbessern. Dazu schlagen wir zunächst die Cache-Sensitive Skip List, eine neue aktualisierbare Hauptspeicherindexstruktur, vor, die für die Zwischenspeicher moderner Prozessoren optimiert ist und das Ausführen von Bereichsabfragen auf einzelnen Datenbankspalten ermöglicht. Im zweiten Abschnitt analysieren wir die Performanz von multidimensionalen Bereichsabfragen auf modernen Serverarchitekturen, bei denen Daten im Hauptspeicher hinterlegt sind und Prozessoren über SIMD-Instruktionen und Multithreading verfügen. Um die Relevanz unserer Experimente für praktische Anwendungen zu erhöhen, schlagen wir zudem einen realistischen Benchmark für multidimensionale Bereichsabfragen vor, der auf echten Genomdaten ausgeführt wird. Im letzten Abschnitt der Dissertation präsentieren wir den BB-Tree als neue, hochperformante und speichereffziente Hauptspeicherindexstruktur. Der BB-Tree ermöglicht das Ausführen von multidimensionalen Bereichs- und Punktabfragen und verfügt über einen parallelen Suchoperator, der mehrere Threads verwenden kann, um die Performanz von Suchanfragen zu erhöhen. / Database systems employ index structures as means to accelerate search queries. Over the last years, the research community has proposed many different in-memory approaches that optimize cache misses instead of disk I/O, as opposed to disk-based systems, and make use of the grown parallel capabilities of modern CPUs. However, these techniques mainly focus on single-key lookups, but neglect equally important range queries. Range queries are an ubiquitous operator in data management commonly used in numerous domains, such as genomic analysis, sensor networks, or online analytical processing. The main goal of this dissertation is thus to improve the capabilities of main-memory database systems with regard to executing range queries. To this end, we first propose a cache-optimized, updateable main-memory index structure, the cache-sensitive skip list, which targets the execution of range queries on single database columns. Second, we study the performance of multidimensional range queries on modern hardware, where data are stored in main memory and processors support SIMD instructions and multi-threading. We re-evaluate a previous rule of thumb suggesting that, on disk-based systems, scans outperform index structures for selectivities of approximately 15-20% or more. To increase the practical relevance of our analysis, we also contribute a novel benchmark consisting of several realistic multidimensional range queries applied to real- world genomic data. Third, based on the outcomes of our experimental analysis, we devise a novel, fast and space-effcient, main-memory based index structure, the BB- Tree, which supports multidimensional range and point queries and provides a parallel search operator that leverages the multi-threading capabilities of modern CPUs.
3

The Data Center under your Desk: How Disruptive is Modern Hardware for DB System Design?

Lehner, Wolfgang 10 January 2023 (has links)
While we are already used to see more than 1,000 cores within a single machine, the next processing platforms for database engines will be heterogeneous with built-in GPU-style processors as well as specialized FPGAs or chips with domain-specific instruction sets. Moreover, the traditional volatile as well as the upcoming non-volatile RAM with capacities in the 100s of TBytes per machine will provide great opportunities for storage engines but also call for radical changes on the architecture of such systems. Finally, the emergence of economically affordable, high-speed/low-latency interconnects as a basis for rack-scale computing is questioning long-standing folklore algorithmic assumptions but will certainly play an important role in the big picture of building modern data management platforms. In this talk, we will try to classify and review existing approaches from a performance, robustness, as well as energy efficiency perspective and pinpoint interesting starting points for further research activities.
4

Demonstrating Efficient Query Processing in Heterogeneous Environments

Karnagel, Tomas, Hille, Matthias, Ludwig, Mario, Habich, Dirk, Lehner, Wolfgang, Heimel, Max, Markl, Volker 30 June 2022 (has links)
The increasing heterogeneity in hardware systems gives developers many opportunities to add more functionality and computational power to the system. As a consequence, modern database systems will need to be able to adapt to a wide variety of heterogeneous architectures. While porting single operators to accelerator architectures is well-understood, a more generic approach is needed for the whole database system. In prior work, we presented a generic hardware-oblivious database system, where the operators can be executed on the main processor as well as on a large number of accelerator architectures. However, to achieve fully heterogeneous query processing, placement decisions are needed for the database operators. We enhance the presented system with heterogeneity-aware operator placement (HOP) to take a major step towards designing a database system that can efficiently exploit highly heterogeneous hardware environments. In this demonstration, we are focusing on the placement-integration aspect as well as presenting the resulting database system.

Page generated in 0.0533 seconds