• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Estimation and Effects of Imperfect System Parameters on the Performance of Multi-Relay Cooperative Communications Systems

MEHRPOUYAN, HANI 17 September 2012 (has links)
To date the majority of research in the area of cooperative communications focuses on maximizing throughput and reliability while assuming perfect channel state information (CSI) and synchronization. This thesis, seeks to address performance enhancement and system parameter estimation in cooperative networks while relaxing these idealized assumptions. In Chapter 3 the thesis mainly focuses on training-based channel estimation in multi-relay cooperative networks. Channel estimators that are capable of determining the overall channel gains from source to destination antennas are derived. Next, a new low feedback and low complexity scheme is proposed that allows for the coherent combining of signals from multiple relays. Numerical and simulation results show that the combination of the proposed channel estimators and optimization algorithm result in significant performance gains. As communication systems are greatly affected by synchronization parameters, in Chapter 4 the thesis quantitatively analyzes the effects of timing and frequency offset on the performance of communications systems. The modified Cramer-Rao lower bound (MCRLB) undergoing functional transformation, is derived and applied to determine lower bounds on the estimation of signal pulse amplitude and signal-to-noise ratio (SNR) due to timing offset and frequency offset, respectively. In addition, it is shown that estimation of timing and frequency offset can be decoupled in most practical settings. The distributed nature of cooperative relay networks may result in multiple timing and frequency offsets. Chapters 5 and 6 address multiple timing and frequency offset estimation using periodically inserted training sequences in cooperative networks with maximum frequency reuse, i.e., space-division multiple access (SDMA) networks. New closed-form expressions for the Cramer-Rao lower bound (CRLB) for multiple timing and multiple frequency offset estimation for different cooperative protocols are derived. The CRLBs are then applied in a novel way to formulate training sequence design guidelines and determine the effect of network protocol and topology on synchronization parameter estimation. Next, computationally efficient estimators are proposed. Numerical results show that the proposed estimators outperform existing algorithms and reach or approach the CRLB at mid-to-high SNR. When applied to system compensation, simulation results show that application of the proposed estimators allow for synchronized cooperation amongst the nodes within the network. / Thesis (Ph.D, Electrical & Computer Engineering) -- Queen's University, 2010-07-29 16:52:50.272

Page generated in 0.0642 seconds