• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Effects of materials positioning and tool rotational speed on metallurgical and mechanical properties of dissimilar modified friction stir clinching of AA5754-O and AA2024-T3 sheets

H. M., Lankarani,, Memon, S., Paidar, M., Mehrez, S., Cooke, Kavian O., Ojo, O.O. 06 April 2022 (has links)
Yes / The performance of the modified friction stir clinched and friction stir spot welded joints of AA5754-O and AA2024-T3 Al alloy was improved by investigating the impact of material flow influencing parameters such as material positioning and tool rotational speed on the microstructure, mechanical and fracture behaviors of the joints. The results reveal that the positioning of a harder material (AA2024-T3) as the upper plate induces higher peak temperatures in the friction stir clinched (500 °C) and friction stir spot welded (475 °C) joints. This positioning favors inter-material mingling, grain coarsening with inherent higher dislocation density and tangles, and improved tensile failure loads in the AA2024-T3/AA5754-O joint than the AA5754-O/AA2024-T3 joint. The formation of partial weld-center defect declines in the AA2024-T3/AA5754-O at low tool rotational speed due to the better local heat build-up and geometric-differential flow effect in comparison with the AA5754-O/AA2024-T3 counterparts. The positioning of harder Al alloy on the top of a soft Al alloy is thus recommended for the improvement of modified friction stir clinched joints.
2

The role of stirring time on the metallurgical and mechanical properties during modified friction stir clinching of AA6061-T6 and AA7075-T6 sheets

Memon, S., Paidar, M., Ojo, O.O., Cooke, Kavian O., Babaei, B., Masoumnezhad, M. 25 November 2020 (has links)
Yes / In this study, the modified friction stir clinching process was successfully utilized to weld the AA7075-T6 to AA6061-T6 aluminum alloys. The approach of this study was to appraise the influence of the stirring time (6, 12, and 18 s) on the metallurgical and mechanical behavior of the welded samples. The microstructural study demonstrated that stirring time significantly affected joint properties and material flow, which can be ascribed to the discrepancy in the properties of the Al alloys used in this study. Void, local melting and defect-free joints were produced under the stirring times of 6 s, 18 s, and 12 s respectively. It was found that tensile/shear strength increased significantly from 63.5 MPa to 109 MPa as the stirring time increased from 6 s to 12 s, while a further increase in the stirring time to 18 s significantly decreased the joint's strength to 76.1 MPa. The observed failed samples showed that stirring time did not influence fracture mode.

Page generated in 0.1637 seconds