1 |
Signal Detection and Modulation Classification in Non-Gaussian Noise EnvironmentsChavali, Venkata Gautham 24 August 2012 (has links)
Signal detection and modulation classification are becoming increasingly important in a variety of wireless communication systems such as those involving spectrum management and electronic warfare and surveillance, among others. The majority of the signal detection and modulation classification algorithms available in the literature assume that the additive noise has a Gaussian distribution. However, while this is a good model for thermal noise, various studies have shown that the noise experienced in most radio channels, due to a variety of man-made and natural electromagnetic sources, is non-Gaussian and exhibits impulsive characteristics. Unfortunately, conventional signal processing algorithms developed for Gaussian noise conditions are known to perform poorly in the presence of non-Gaussian noise. For this reason, the main goal of this dissertation is to develop statistical signal processing algorithms for the detection and modulation classification of signals in radio channels where the additive noise is non-Gaussian.
One of the major challenges involved in the design of these algorithms is that they are expected to operate with limited or no prior knowledge of the signal of interest, the fading experienced by the signal, and the distribution of the noise added in the channel. Therefore, this dissertation develops new techniques for estimating the parameters that characterize the additive non-Gaussian noise process, as well as the fading process, in the presence of unknown signals. These novel estimators are an integral contribution of this dissertation.
The signal detection and modulation classification problems considered here are treated as hypothesis testing problems. Using a composite hypothesis testing procedure, the unknown fading and noise process parameters are first estimated and then used in a likelihood ratio test to detect the presence or identify the modulation scheme of a signal of interest. The proposed algorithms, which are developed for different non-Gaussian noise models, are shown to outperform conventional algorithms which assume Gaussian noise conditions and also algorithms based on other impulsive noise mitigation techniques.
This dissertation has three major contributions. First, in environments where the noise can be modeled using a Gaussian mixture distribution, a new expectation-maximization algorithm based technique is developed for estimating the unknown fading and noise distribution parameters. Using these estimates, a hybrid likelihood ratio test is used for modulation classification. Second, a five-stage scheme for signal detection in symmetric α stable noise environments, based on a class of robust filters called the matched myriad filters, is presented. New algorithms for estimating the noise distribution parameters are also developed. Third, a modulation classifier is proposed for environments in which the noise can be modeled as a time-correlated non-Gaussian random process. The proposed classifier involves the use of a whitening filter followed by likelihood-based classification. A new H_â filter-based technique for estimating the whitening filter coefficients is presented. / Ph. D.
|
2 |
Blind Comprehension of Waveforms through Statistical ObservationsClark, William H. IV January 2015 (has links)
This paper proposes a cumulant based classification means to identify waveforms for a blind receiver in the presence of time varying channels, which is built from the work done on cumulants in static channels currently in the literature. Results show the classification accuracy is on the order or better than current methods in use in static channels that do not vary over an observation period. This is accomplished by making use of second through tenth order cumulants in a signature vector that the search engine platform has the means of differentiating. A receiver can then blindly identify waveforms accurately in the presence of multipath Rayleigh fading with AWGN noise.
Channel learning occurs prior to classification in order to identify the consistent distortion pattern for a waveform that is observable in the signature vector. Then using a database look-up method, the observed waveform is identified as belonging to a particular cluster based on the observed signature vector. If the distortion patterns are collected from a variety of channel types, the database can then classify both the waveform and the rough channel type that the waveform passed through. If the exact channel model or channel parameters is known and used as a limiter, significant improvement on the waveform classification can be achieved. Greater accuracy comes from using the exact channel model as the limiter. / Master of Science
|
3 |
A unified practical approach to modulation classification in cognitive radio using likelihood-based techniquesSalam, A.O.A., Sheriff, Ray E., Al-Araji, S.R., Mezher, K., Nasir, Q. January 2015 (has links)
No / he automatic classification of digital modulated signals has been subject to extensive studies over the last decade, with numerous scholarly articles and research studies published. This paper provides an insightful guidance and discussion on the most practical approaches of automatic modulation classification (AMC) in cognitive radio (CR) using likelihood based (LB) statistical tests. It also suggests a novel idea of storing the known constellation sets on the receiver side using a look-up table (LUT) to detect the transmitted replica. Relevant performance measures with simulated comparisons in flat fading additive white Gaussian noise (AWGN) channels are examined. Namely, the average likelihood ratio test (ALRT), generalized LRT (GLRT) and hybrid LRT (HLRT) are particularly illustrated using linearly phase-modulated signals such as M-ary phase shift keying (MPSK) and quadrature amplitude modulation (MQAM). When the unknown signal constellation is estimated using the maximum likelihood (ML) method, results indicate that the HLRT performs well and near optimal in most situations without extra computational burden.
|
4 |
Likelihood-Based Modulation Classification for Multiple-Antenna ReceiversRamezani-Kebrya, Ali 21 September 2012 (has links)
Prior to signal demodulation, blind recognition of the modulation
scheme of the received signal is an important task for intelligent
radios in various commercial and military applications such as
spectrum management, surveillance of broadcasting activities and adaptive
transmission. Antenna arrays provide spatial diversity and increase channel
capacity. This thesis focuses on the algorithms and performance analysis of
the blind modulation classification (MC) for a multiple antenna receiver configuration.
For a single-input-multiple-output (SIMO) configuration with unknown channel amplitude, phase, and noise variance, we
investigate likelihood-based algorithms for linear digital MC. The existing
algorithms are presented and extended to SIMO. Using recently proposed blind estimates of the unknown parameters, a
new algorithm is developed. In addition, two upper bounds on the classification performance of MC
algorithms are provided. We derive the exact Cramer-Rao Lower Bounds (CRLBs) of joint estimates of the unknown parameters for one- and two-dimensional amplitude modulations. The asymptotic behaviors of the CRLBs are obtained for the high signal-to-noise-ratio (SNR) region. Numerical results demonstrate the accuracy of the CRLB expressions and confirm that the expressions in the literature are special cases of our results. The classification performance of the proposed algorithm is compared with the existing algorithm and upper bounds. It is shown that the proposed algorithm outperforms the existing one significantly with reasonable computational complexity.
The proposed algorithm in this thesis can be used in modern intelligent radios equipped with multiple antenna receivers
and the provided performance analysis, i.e., the CRLB expressions, can be employed to design practical systems involving estimation of the unknown parameters
and is not limited to MC. / Thesis (Master, Electrical & Computer Engineering) -- Queen's University, 2012-09-21 00:51:43.938
|
5 |
Spectrum Sensing in the Presence of Channel and Tx/Rx ImpairmentsHeadley, William C. 05 June 2015 (has links)
The task of spectrum sensing, defined here to consist of signal detection, signal parameter estimation, and signal identification, is a critically important task in a wide-variety of wireless communication applications. For example, in recent years, government and research initiatives have proposed the idea of communication systems that could gain access to spectrum opportunistically when being unused by primary licensed spectrum users. In order for these opportunistic systems to be realizable, methods by which secondary spectrum users can detect and classify these primary users will be necessary. Furthermore, detection and classification among the secondary users themselves will be important for efficient spectrum usage in these systems. As another example, spectrum sensing is also of critical importance in many military applications. This is due to the inherent expectation that a priori information of hostile wireless systems will be minimal or unavailable.
The goal of this dissertation is to provide both insight and solutions in the critical area of spectrum sensing. More specifically, the research contained within this dissertation deals with the development and analysis of spectrum sensing algorithms that address key issues related to channel and radio impairments that are at present underdeveloped in the literature. First, research is presented on a method-of-moments based signal parameter estimation and likelihood-based modulation classification approach for linear digital amplitude-phase modulated signals (PAM, PSK, QAM, ...) in slowly-varying flat-fading channels. Based on this work, research is then presented on a feature-based modulation classification approach which relaxes the requirements of perfect frequency synchronization and knowledge of the phase information of the received signal that the likelihood-based approach requires. Finally, research is presented on the impact that both sensor reliability and sensor correlation information have on collaborative signal detection and intelligent sensor selection. / Ph. D.
|
6 |
Cyclostationarity Feature-Based Detection and ClassificationMalady, Amy Colleen 25 May 2011 (has links)
Cyclostationarity feature-based (C-FB) detection and classification is a large field of research that has promising applications to intelligent receiver design. Cyclostationarity FB classification and detection algorithms have been applied to a breadth of wireless communication signals — analog and digital alike. This thesis reports on an investigation of existing methods of extracting cyclostationarity features and then presents a novel robust solution that reduces SNR requirements, removes the pre-processing task of estimating occupied signal bandwidth, and can achieve classification rates comparable to those achieved by the traditional method while based on only 1/10 of the observation time. Additionally, this thesis documents the development of a novel low order consideration of the cyclostationarity present in Continuous Phase Modulation (CPM) signals, which is more practical than using higher order cyclostationarity.
Results are presented — through MATLAB simulation — that demonstrate the improvements enjoyed by FB classifiers and detectors when using robust methods of estimating cyclostationarity. Additionally, a MATLAB simulation of a CPM C-FB detector confirms that low order C-FB detection of CPM signals is possible. Finally, suggestions for further research and contribution are made at the conclusion of the thesis. / Master of Science
|
7 |
Spectrum Sensing and Blind Automatic Modulation Classification in Real-TimeSteiner, Michael Paul 13 June 2011 (has links)
This paper describes the implementation of a scanning signal detector and automatic modulation classification system. The classification technique is a completely blind method, with no prior knowledge of the signal's center frequency, bandwidth, or symbol rate. An energy detector forms the initial approximations of the signal parameters. The energy detector used in the wideband sweep is reused to obtain fine estimates of the center frequency and bandwidth of the signal. The subsequent steps reduce the effect of frequency offset and sample timing error, resulting in a constellation of the modulation of interest. The cumulant of the constellation is compared to a set of known ideal cumulant values, forming the classification estimate.
The algorithm uses two platforms that together provide high speed parallel processing and flexible run-time operation. High-rate spectral scanning using an energy detector is run in parallel with a variable down sampling path; both are highly pipelined structures, which allows for high data throughput. A pair of processing cores is used to record spectral usage and signal characteristics as well as perform the actual classification.
The resulting classification system can accurately identify modulations below 5 dB of signal-to-noise ratio (SNR) for some cases of the phase shift keying family of modulations but requires a much higher SNR to accurately classify higher-order modulations. These estimates tend toward classifying all signals as binary phase shift keying because of limits of the noise power estimation part of the cumulant normalization process. Other effects due to frequency offset and synchronization timing are discussed. / Master of Science
|
8 |
Automatic modulation classification using interacting multiple model - Kalman filter for channel estimationAbdul Salam, Ahmed O., Sheriff, Ray E., Hu, Yim Fun, Al-Araji, S.R., Mezher, K. 26 July 2019 (has links)
Yes / A rigorous model for automatic modulation
classification (AMC) in cognitive radio (CR) systems is proposed
in this paper. This is achieved by exploiting the Kalman filter
(KF) integrated with an adaptive interacting multiple model
(IMM) for resilient estimation of the channel state information
(CSI). A novel approach is proposed, in adding up the squareroot singular values (SRSV) of the decomposed channel using the
singular value decompositions (SVD) algorithm. This new
scheme, termed Frobenius eigenmode transmission (FET), is
chiefly intended to maintain the total power of all individual
effective eigenmodes, as opposed to keeping only the dominant
one. The analysis is applied over multiple-input multiple-output
(MIMO) antennas in combination with a Rayleigh fading channel
using a quasi likelihood ratio test (QLRT) algorithm for AMC.
The expectation-maximization (EM) is employed for recursive
computation of the underlying estimation and classification
algorithms. Novel simulations demonstrate the advantages of the
combined IMM-KF structure when compared to the perfectly
known channel and maximum likelihood estimate (MLE), in
terms of achieving the targeted optimal performance with the
desirable benefit of less computational complexity loads.
|
9 |
Gated Transformer-Based Architecture for Automatic Modulation ClassificationSahu, Antorip 05 February 2024 (has links)
This thesis delves into the advancement of 5G portable test-nodes in wireless communication systems with cognitive radio capabilities, specifically addressing the critical need for dynamic spectrum sensing and awareness at the radio receiver through AI-driven automatic modulation classification. Our methodology is centered around the transformer encoder architecture incorporating a multi-head self-attention mechanism. We train our architecture extensively across a diverse range of signal-to-noise ratios (SNRs) from the RadioML 2018.01A dataset. We introduce a novel transformer-based architecture with a gated mechanism, designed as a runtime re-configurable automatic modulation classification framework, which demonstrates enhanced performance with low SNR RF signals during evaluation, an area where conventional methods have shown limitations, as corroborated by existing research. Our innovative single-model framework employs distinct weight sets, activated by varying SNR levels, to enable a gating mechanism for more accurate modulation classification. This advancement in automatic modulation classification marks a crucial step toward the evolution of smarter communication systems. / Master of Science / This thesis delves into the advancement of wireless communication systems, particularly in developing portable devices capable of effectively detecting and analyzing radio signals with cognitive radio capabilities. Central to our research is leveraging artificial intelligence (AI) for automatic modulation classification, a method to identify signal modulation types. We utilize a transformer-based AI model trained on the RadioML 2018.01A dataset. Our training approach is particularly effective when evaluating low-quality signals using a gating mechanism based on signal-to-noise ratios, an area previously considered challenging in existing research. This work marks a significant advancement in creating more intelligent and responsive wireless communication systems.
|
10 |
Automatic classification of digital communication signal modulationsZhu, Zhechen January 2014 (has links)
Automatic modulation classification detects the modulation type of received communication signals. It has important applications in military scenarios to facilitate jamming, intelligence, surveillance, and threat analysis. The renewed interest from civilian scenes has been fuelled by the development of intelligent communications systems such as cognitive radio and software defined radio. More specifically, it is complementary to adaptive modulation and coding where a modulation can be deployed from a set of candidates according to the channel condition and system specification for improved spectrum efficiency and link reliability. In this research, we started by improving some existing methods for higher classification accuracy but lower complexity. Machine learning techniques such as k-nearest neighbour and support vector machine have been adopted for simplified decision making using known features. Logistic regression, genetic algorithm and genetic programming have been incorporated for improved classification performance through feature selection and combination. We have also developed a new distribution test based classifier which is tailored for modulation classification with the inspiration from Kolmogorov-Smirnov test. The proposed classifier is shown to have improved accuracy and robustness over the standard distribution test. For blind classification in imperfect channels, we developed the combination of minimum distance centroid estimator and non-parametric likelihood function for blind modulation classification without the prior knowledge on channel noise. The centroid estimator provides joint estimation of channel gain and carrier phase o set where both can be compensated in the following nonparametric likelihood function. The non-parametric likelihood function, in the meantime, provide likelihood evaluation without a specifically assumed noise model. The combination has shown to have higher robustness when different noise types are considered. To push modulation classification techniques into a more timely setting, we also developed the principle for blind classification in MIMO systems. The classification is achieved through expectation maximization channel estimation and likelihood based classification. Early results have shown bright prospect for the method while more work is needed to further optimize the method and to provide a more thorough validation.
|
Page generated in 0.0185 seconds