• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Universaidade em sistemas da mec?niaestat?stica de n?o equil?brio com estados absorventes e percola??o geogr?fica

Cunha, Sharon Dantas da 30 April 2010 (has links)
Made available in DSpace on 2015-03-03T15:16:24Z (GMT). No. of bitstreams: 1 Sharon Dantas da Cunha_TESE.pdf: 1195447 bytes, checksum: 1fbe3e032b9d8b35f426da9dcf7b882c (MD5) Previous issue date: 2010-04-30 / Complex systems have stimulated much interest in the scientific community in the last twenty years. Examples this area are the Domany-Kinzel cellular automaton and Contact Process that are studied in the first chapter this tesis. We determine the critical behavior of these systems using the spontaneous-search method and short-time dynamics (STD). Ours results confirm that the DKCA e CP belong to universality class of Directed Percolation. In the second chapter, we study the particle difusion in two models of stochastic sandpiles. We characterize the difusion through diffusion constant D, definite through in the relation h(x)2i = 2Dt. The results of our simulations, using finite size scalling and STD, show that the diffusion constant can be used to study critical properties. Both models belong to universality class of Conserved Directed Percolation. We also study that the mean-square particle displacement in time, and characterize its dependence on the initial configuration and particle density. In the third chapter, we introduce a computacional model, called Geographic Percolation, to study watersheds, fractals with aplications in various areas of science. In this model, sites of a network are assigned values between 0 and 1 following a given probability distribution, we order this values, keeping always its localization, and search pk site that percolate network. Once we find this site, we remove it from the network, and search for the next that has the network to percole newly. We repeat these steps until the complete occupation of the network. We study the model in 2 and 3 dimension, and compare the bidimensional case with networks form at start real data (Alps e Himalayas) / Sistemas Complexos t?m despertado bastante interesse na comunidade cient?fica nestas duas ?ltimas d?cadas. Exemplos desta ?rea s?o os Aut?matos Celulares, dentre os quais citamos o de Domany-Kinzel (ACDK) e o Processo de Contato (PC) que estudaremos no primeiro cap?tulo desta tese. Determinamos a criticalidade destes sistemas usando o M?todo de Busca Autom?tica e o Regime de Tempo Curto (RTC). Os nossos resultados confirmaram que o ACDK e o PC pertencem a classe de universalidade da Percola??o Direcionada. No segundo cap?tulo, estudamos a difus?o de part?culas em dois modelos de Pilhas de Areia Estoc?sticas. Caracterizamos a difus?o atrav?s da constante de difus?o D, definida atrav?s da rela??o ((A x)2)= 2Dt. Os resultados das nossas simula??es computacionais (colapsos de dados e RTC) mostraram que esta constante pode usada para estudar as propriedades cr?ticas. Ambos os modelos pertencem a classe de universalidade da percola??o direcionada conservativa. Tamb?m estudamos o comportamento do deslocamento quadr?tico da posi??o no tempo que ? dependente da configura??o inicial e do valor de p. No terceiro, criamos um modelo num?rico, denominado de ?Percola??o Geogr?fica?, para estudar as linhas divis?rias, fractais cujas aplica??es est?o nas mais distintas ?reas. Neste modelo, preenchemos a rede com valores entre 0 e 1 a partir de uma distribui??o de probabilidade, ordenamos estes valores, sempre guardando a sua localiza??o, e procuramos o s?tio pk que faz a rede percolar. Quando encontramos este s?tio, o retiramos da rede, e procuramos o pr?ximo que faz a rede percolar novamente. Repetimos at? preencher a rede. Estudamos o caso em 2 e 3 dimens?es, e comparamos o caso bidimensional com redes formadas a partir de dados reais (Alpes e Himalaia)

Page generated in 0.0536 seconds