• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

EVALUATION OF BEDROCK DEPTH AND SOIL INFILTRATION ALONG PENNYPACK CREEK USING ELECTRICAL RESISTIVITY TOMOGRAPHY AND MOISTURE LOGGERS

Milinic, Bojan, 0000-0001-5516-2291 January 2022 (has links)
Urbanized areas with increased amounts of impervious surfaces alter hydrologic systems by increasing stormwater runoff, decreasing infiltration, and reducing vegetation cover and evapotranspiration. Modeling hydrologic systems here is especially difficult due to the increased impervious land cover, which makes predicting processes such as urban streamflow and flooding challenging. By understanding the drivers of hydraulic processes, such as soil characteristics, bedrock depth, and land use, the quality and accuracy of models can be improved. The goal of this study was to use soil moisture loggers and electrical resistivity tomography (ERT) along the Pennypack Creek (Philadelphia, PA) to evaluate soil infiltration and bedrock depth in urban areas to ultimately access their impact on critical zone modeling. ERT was also used to validate or dispute recent seismic interpretations. Four study sites adjacent to Pennypack Creek were selected based on variations in underlying geology: Triassic basin sedimentary rock (Lukens), Paleozoic mafic gneiss (Meadow), Piedmont mica schist (Pine Road), and coastal plain weathered down to mica schist (Rhawn Street). Soil moisture sensors were installed at each site to a depth of up to 50 cm. ERT surveys were conducted at Pine Road and Rhawn Street sites. High infiltration variation at Pine Road and Meadow indicated macropores, which create preferential flow paths whereas low infiltration variation at Rhawn Street and Lukens indicated compaction associated with their land use (public parks). Comparing field capacity data to USDA soil type maps indicated the soil type was not a good predictor and in situ sampling was needed to estimate soil properties. ERT demonstrated bedrock was not shallow at the streambed as predicted by the seismic inversion and showed the need to corroborate depth to bedrock from seismic surveys beneath streams with resistivity inversions. Structure beneath the streambed was particularly noisy for the seismic surveys due to the flow of stream water. This study demonstrates that an accurate critical zone model, especially at urban sites, must rely on in situ investigation of hydrologic parameters based on land use, rather than assumptions of parameter values based on the underlying geology or soil type. / Geology

Page generated in 0.0744 seconds