• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Impact de la température sur la carbonatation des matériaux cimentaires : prise en compte des transferts hydriques / Effect of temperature on the drying and on the atmospheric carbonation of cementitious materials

Drouet, Emeline 18 November 2010 (has links)
La carbonatation est une pathologie du béton armé qui peut engendrer la corrosion des armatures et à terme de la fissuration. Dans le cadre de la gestion des déchets radioactifs, les structures et les conteneurs seraient soumis simultanément à un échauffement (exothermie des déchets), au CO2 atmosphérique, ainsi qu'à un séchage important. Afin de rendre compte de leur évolution à l'échelle séculaire, les données actuelles relatives à la carbonatation à température ambiante doivent être complétées, d'une part par une description de la phénoménologie en température, et d'autre part, par la prise en compte de l'impact des transferts hydriques en température (séchage) sur la carbonatation en insaturé. Le travail présenté se focalise sur l’étude de la durabilité de quatre pâtes de ciment différentes dont deux sont directement dérivées des formulations de référence sélectionnées par l’Andra (CEM I et CEM V) et un mélange baspH. Le premier volet est dédié à l'étude des transferts hydriques reposant sur la conduite d'essais de désorption. Il a notamment permis la caractérisation des isothermes de désorption en température (20, 50et 80°C). L'impact thermique modifie les isothermes : la teneur en eau à l’équilibre chute avec la température et le point d'amorçage de la condensation capillaire est déplacé. Une phase de modélisation a conjointement été conduite en support aux expérimentations. L'utilisation de l'équation de Clausius-Clapeyron a permis de décrire l'effet de la température sur les isothermes (par la détermination de la chaleur isostérique d’adsorption de chacun des matériaux). Bien que l'impact de la température sur la microstructure des pâtes de ciment soit avéré, la prise en compte du déplacement des équilibres thermodynamiques suffit à restituer cet effet thermique sur les isothermes. La détermination des perméabilités intrinsèques par exploitation des cinétiques de désorption (par analyse inverse) a montré la thermoactivation du transport d'eau. La contribution de l'évolution de la microstructure en température ne peut-être négligée sur la perméabilité des matériaux.Le deuxième volet exploratoire, est consacré à l'étude de la carbonatation en température. Il repose sur la mise en place d'un dispositif de carbonatation spécifique (fonctionnement en température) et la conduite d'essais de carbonatation à HR et température contrôlées. La campagne de caractérisation (DRX et ATG)a conduit à l'obtention de profils de carbonatation caractéristiques de chaque couple (HR, Température).Les évolutions minéralogiques (décomposition des hydrates, distribution polymorphique du carbonate de calcium précipité) mises en évidence en température se rapprochent de celles identifiées à température ambiante. En revanche, il ressort que les conditions environnementales influencent significativement les proportions polymorphiques : plus l'HR est faible, plus les teneurs en phases métastables (vatérite,aragonite) sont élevées. Les réactions de dissolution-précipitation mises en jeu dans la transformation polymorphique (des états métastables vers la calcite) sont inhibées à faible HR, par manque de milieu réactionnel. La cinétique de carbonatation, également impactée par les conditions environnementales, est régie par la concurrence de l'effet thermique sur les transferts hydriques et sur la solubilité rétrograde des réactifs. Les profondeurs carbonatées sont maximales aux points d'amorçage de la condensation capillaire propres aux différents matériaux et à chaque température. Les profondeurs carbonatées augmentent avec la température jusqu'à une température limite, caractéristique de la formulation, au-delà de laquelle la solubilité rétrograde des réactifs deviendrait le facteur limitant.Cette phase de compréhension des mécanismes mis en jeu dans la carbonatation en température et de leur niveau de couplage effectuée, les modèles prédictifs de carbonatation en insaturé pourront être étendus à l'application en température. Les résultats de ce travail fournissent les données d'entrées et de validation nécessaires à la validation des simulations numériques. / Carbonation is the major cause of degradation of reinforced concrete structures. It leads to rebar corrosion and cracking of the concrete cover. In the framework of radioactive waste management, cement-based materials used as building material for structures or containers would be simultaneously submitted to heating (due to the waste thermal output), subsequent drying and atmospheric carbon dioxide. Such environmental conditions are expected to modify the carbonation mechanisms (with respect to temperature). In order to describe their long-term evolution of material, a double approach was developed, combining the description of carbonation and drying for temperatures up to 80°C to complement available data at ambient temperature. The present work focuses on the durability study off our hardened cement pastes; two of them are derived from the reference formulations selected by Andra(CEM I and CEM V) and a low-pH mix. The first experimental campaign focuses on moisture transfer. The effect of temperature on drying is investigated through water vapour desorption experiments. The first desorption isotherms of four hardened cement pastes was characterized at 20, 50 and 80°C. The results show a significant influence of the temperature. For a given relative humidity (RH) the water content equilibrium is always reduced temperature is increased and the starting point of capillary condensation is shifted towards higher RHs. The experimental campaign is complemented through modelling activities. The impact of temperature on the first desorption isotherms is effectively described using the Clausius-Clapeyron equation(characterization of the isosteric heat of adsorption). The intrinsic permeability to water is evaluated through inverse analysis by reprocessing the experimental weight loss of initially saturated samples submitted to constant environmental conditions. The intrinsic permeability appears to increase with temperature in relation to the observed microstructure evolution (porosity coarsening).The environmental conditions impact is studied using preconditioned samples (12 different RHs and 20,50 and 80°C) and accelerated carbonation tests. The latter are performed in a new device allowing accurate control of the environmental conditions as well as the carbon dioxide concentration. The carbonated depths and the mineralogical modifications induced by carbonation are assessed using XRDand TGA for each temperature and RH. Most of the mineralogical modifications notified in temperature(hydrates consumption and nature of crystallographic phase of calcium carbonate) are similar with these identified at ambient temperature. Yet the results show a significant influence of the environmental conditions on calcium carbonate polymorphic abundance: the lower the RH, the more abundant the metastable phases (vaterite and aragonite).The rate of the polymorphic transformation (from the metastable states into calcite by dissolution precipitation)is believed to decrease with RH because of lack of liquid water. A significant influence of the environmental conditions on the carbonation rate is also observed. It depends of the competition between the temperature effect on moisture transfer and retrograde solubility of reactants. Carbonation depths appear to be maximal at the RH-starting point of capillary condensation of each material and temperature. Carbonation depths increase with temperature until a limit of temperature characteristic of the material. Above this temperature, reactants solubility might control the main process.
2

Analyse expérimentale et numérique du comportement hygrothermique de parois fortement hygroscopiques / -

Slimani, Zakaria 17 December 2015 (has links)
La simulation des transferts couplés de chaleur et de masse dans l’enveloppe du bâtiment est une pratique qui se démocratise de plus en plus. Pour les bâtiments construits avec des matériaux très hygroscopiques, l'évaluation correcte des champs de température et d’humidité est importante pour prédire avec précision les flux de chaleur et d'humidité, le confort hygrothermique et la consommation énergétique des bâtiments. En outre, l'humidité peut causer des dommages aux matériaux de construction et a un impact sur la santé des occupants. Pour les matériaux très hygroscopiques, les outils de simulation ont montré des lacunes à modéliser correctement le comportement hygrothermique. Sur ces questions, le projet de recherche HYGRO-BAT est un projet fédérateur. Dans ce contexte, nous avons développé un modèle suffisamment fin de transfert couplé de Chaleur, d’Air et d’Humidité (CAH) qui permet l’analyse des principaux phénomènes physiques mis en jeu. Afin de valider le modèle développé et d’étudier en détail le comportement hygrothermique d’une paroi très hygroscopique, nous avons conçu et réalisé un outil expérimental avec une instrumentation riche et variée permettant de simuler les contraintes rencontrées dans le cas réel. Le choix des sollicitations hygrothermiques retenues permet une compréhension progressive du modèle. De surcroît, pour simplifier l’analyse des mécanismes de transfert couplés au sein de la paroi, une formulation adimensionnée du modèle développé a été proposée, permettant ainsi de mettre en avant des nombres adimensionnels qui simplifient l’analyse du comportement d’une paroi très hygroscopique. Ces nombres permettent une nouvelle caractérisation représentative des mécanismes de transfert qui dépendent de l’état thermodynamique de la paroi / Simulation of Heat, Air and Moisture (HAM) transfers in building envelope is a practice which is becoming increasingly popular. The correct evaluation of temperature and moisture fields is important to predict accurately heat and moisture fluxes, hygrothermal comfort and building energy consumption, especially for highly hygroscopic materials. Additionally, moisture has an impact on the health of occupants and can causes damage to building materials. For highly hygroscopic materials, simulation models show discrepancy to the real hygrothermal behavior. The research project HYGRO-BAT is a unifying project on these issues. In this context, we developed a hygrothermal transfer model sufficiently fine allowing the analysis of the main physical phenomena involved. In order to validate the developed model and to study in detail the coupled heat and mass transfers for highly hygroscopic walls, we designed and realized an experimental tool that allows numerous and various measurement and creating climates encountered for building application. The choice of hygrothermal loading allows progressive understanding of involved physical mechanisms in the envelope. Moreover, to simplify the analysis, a dimensionless hygrothermal formulation was proposed. It allows highlighting dimensionless numbers which are very convenient to study the behavior of a very hygroscopic wall. These numbers allow a new representative characterization of transfer mechanisms that rely on the thermodynamic state of the wall
3

Étude du transfert de chaleur et de masse dans les milieux complexes : application aux milieux fibreux et à l’isolation des bâtiments / Study of heat and mass transfers in complex media : application to fibrous media and building insulation

Mnasri, Faiza 06 December 2016 (has links)
Le contexte énergétique international impose de nouvelles orientations au secteur du bâtiment neuf ou en rénovation. Toute nouvelle solution doit être techniquement efficace et respectueuse pour l’environnement. Il s'agit dans ce travail de thèse de réaliser une étude numérique et expérimentale de matériaux de construction biosourcés liés au contexte transfrontalier Lorrain (France-Belgique- Luxembourg). En effet, ce travail intègre une partie du projet européen « Ecotransfaire » mené pour le développement d'une filière durable propre aux éco-matériaux. La sélection des matériaux selon une liste de critères à la fois scientifiques, géographiques et environnementaux a permis de répondre à notre problématique en s'orientant vers l'intégration des matériaux biosourcés pour leurs aspects favorables à l'environnement et à l’efficacité énergétique du bâtiment. Intégrés au bâtiment, ces matériaux sont sujets à plusieurs phénomènes de transfert de chaleur et de masse. Dans un premier temps et pour mieux appréhender ces phénomènes, un modèle de transfert couplé de chaleur, d'air, d'humidité (HAM transfers) est utilisé pour simuler le comportement hygrothermique d’un matériau en bois massif à structure supposée homogène. Ce modèle, mis en œuvre et résolu par la méthode des éléments finis, a été validé par des résultats analytiques retenus dans la littérature. L'étude de sensibilité du modèle au couplage, aux dimensions dans l'espace, aux conditions aux limites et aux variabilités des paramètres d'entrée est également présentée. Une des difficultés de l’utilisation de ce modèle réside dans la prise en considération de l'aspect fortement hétérogène de certains matériaux. Ainsi, dans ce travail, nous proposons une approche de caractérisation d'un composite lignocellulosique hétérogène de structure poreuse. En effet ce matériau est composé de deux constituants bien connus dans le domaine de l’industrie de construction: Le bois et le ciment. Le bois est incorporé sous forme de granulats avec des formes et des tailles irrégulières et le ciment est utilisé comme un liant. Le travail réalisé permet de remonter aux propriétés intrinsèques équivalentes de ce matériau (conductivité thermique et perméabilité à la vapeur) à l’aide des techniques de micro-tomographie. La méthodologie suivie consiste à la détermination de la structure d'échantillon par une prise d'images à l'échelle microscopique. Une fois la structure de l’échantillon générée, une reconstruction de la représentation bidimensionnelle précède la génération de la structure tridimensionnelle à l'aide d’un outil numérique qui permet de déterminer les propriétés équivalentes des domaines reconstruits en 3D. La perméabilité et la conductivité thermique équivalentes sont les deux propriétés évaluées dans cette configuration. Ces deux propriétés dépendent fortement de la porosité et de la distribution des pores dans la phase continue (la phase solide). De plus la composition de ce matériau et les fractions volumiques de chacun de ses constituants influent sur la formation de sa microstructure et par conséquent sur ses propriétés de transferts thermiques et hydriques. L'ensemble des connaissances développées dans ce travail permet une piste sérieuse pour l'élaboration d'un éco-matériau à propriétés contrôlées pour des usages spécifiques dans la construction et la rénovation / International energy context requires a new orientation to the building sector as in construction or in renovation. Any new solution must be technically efficient and environmentally acceptable. In this thesis, the object is to achieve a numerical and experimental analysis of a building biobased materials. Some of these materials are included from the study of a transborder project to the Lorraine region (France, Belgium and Luxembourg). Indeed an Ecotransfaire project was included in this work. This project has been oriented to the development of a sustainable eco materials chain. A process of analysis has been established in order to select the materials candidates on the basis of scientific, geographical and environmental criteria. The answers are moving towards the integration of bio-based materials. These materials are subject of several heat and mass transfers phenomena. So understanding these mechanisms within a building material has been achieved firstly. This resulted on a coupled model of heat transfer, air, moisture experienced by the HAM model. This model is applied to a wooden building material whose its structure is assumed homogeneous. Then, this model was implemented and solved by the finite element method. Its numerical solution is validated by analytical results available in the literature. The study of sensitivity of the model coupling, dimensions in space, the boundary conditions and the variability of input parameters is also presented. One of the difficulties of using this model is the case of heterogeneous materials. Thus, in this work, we propose an approach of characterization of a heterogeneous lignocellulosic composite material with a porous structure. In fact, this material is composed of two components: Wood and cement. The wood is presented by a shapes aggregates with irregulars sizes and the cement is considered as the binder in the composition. The object was to predict its equivalent intrinsic properties (thermal conductivity and vapor permeability) by using the micro-tomography techniques.The methodology consists to determine the structure of the sample by taking images at the microscopic scale. Once the structure of the sample is generated, we will conduct from a reconstruction of the two-dimensional representation to a three dimensional structure by using a numerical tool which determines the equivalent properties of the 3D reconstructed domain. The permeability as well as the equivalent thermal conductivity are the two properties evaluated in this configuration. These two properties are strongly depend to the porosity and to pore distribution in the continuous phase (the solid one). Moreover the composition of the material and the volume fractions of each components influence the formation of microstructure and consequently the thermal and hydric transfers
4

Modelling and experimental analysis of a geothermal ventilated foundation / Modélisation et étude expérimentale d'une fondation géothermique ventilée

Taurines, Kevin 26 October 2017 (has links)
Cette thèse porte sur l’analyse thermique et énergétique d’une fondation géothermique ventilée. A l’instar des échangeurs air-sol classiques (EAHE), celle-ci permet de rafraichir ou préchauffer selon la saison l’air destiné au renouvellement sanitaire des bâtiments. Face aux contraintes de rationalisation des consommations et aux exigences de confort thermique croissantes, ces systèmes passifs apparaissent comme étant prometteurs. Le principe de cette fondation est simple et similaire à celui des EAHE : faire circuler de l’air dans une conduite enterrée dans le sol (un à trois mètres) pour qu’il bénéficie - via convection - de l’inertie thermique du sol. La différence réside dans le fait que le canal dans lequel circule l’air n’est pas un tube en PVC ou aluminium mais fait partie intégrante de la structure du bâtiment, à savoir la fondation en béton armé. Ceci présente comme avantage majeur le gain de place lié à l’espace requis pour l’enfouissement des tuyaux. D’un point de vue thermique, la fondation échange non seulement de la chaleur avec le sol exposé aux sollicitations météorologiques mais aussi, et simultanément, aux sollicitations venant du bâtiment. De plus, la profondeur de la fondation – imposée par des raisons structurelles et économiques – est moindre que pour un EAHE traditionnel. Additionné au fait que le béton est poreux, la présence d’humidité peut fortement influencer la performance thermique de la fondation. Le présent travail propose donc d’étudier le comportement thermique complexe de cette fondation par deux approches. La première est expérimentale : un EHPAD équipé de deux fondations a été lourdement instrumenté et des données ont été accumulées sur plus d’un an. L’autre est numérique : deux modèles validés par comparaison avec les données expérimentales ont été développés. Le premier a vocation d’outil de dimensionnement, l’autre de compréhension fine des phénomènes physiques et prends en compte les transferts couplés de chaleur et de masse. / This thesis deals with the thermal and energy analysis of a geothermal ventilated fonudation. Similarly to earth-to-air heat exchangers (EAHE) this foundation enables, according to the season, to preheat or to cool down the air for the hygienic air change. Considering the energy consumption constraints and the buildings users thermal comfort desire, these systems appears to be relevant. The principle of this foundation is simple: to force the air to circulate in a hollowed beam buried into the ground (1 to 3m depth) so that it takes advantage - via convection - to the thermal inertia of the ground. The difference lays on the fact that the channel is not a plastic or aluminium pipe but it a part of the building structure, namely the reinforced concrete foundation. This induces a significant space gain, usually devoted to the pipe burying. From a thermal point of view, the foundation exchanges heat with both the soil beneath the building, and with the soil exposed to the weather thermal loads. Furthermore, the depth - imposed by structural and economical purposees - is lower than that of traditional EAHE. In addition to the fact that concrete is a porous material, the humidity content may strongly influence the thermal performance of the foundation. The current work thus proposes to study the complex thermal behaviour of this foundation in two ways. The first is experimental: an retirement home equipped with two foundation has been intensively instrumented and data recorded over more than one year. The other is numerical: two models validated against the experimental data have been developed. The first is intended to be a designing tool, the second a tool to allow a fine comprehension of the physical phenomenon and take into account coupled heat and moisture transfers.

Page generated in 0.0968 seconds