• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 364
  • 32
  • 21
  • 6
  • 4
  • 3
  • 1
  • 1
  • Tagged with
  • 942
  • 942
  • 603
  • 437
  • 423
  • 212
  • 202
  • 199
  • 168
  • 85
  • 85
  • 77
  • 67
  • 61
  • 60
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
361

Electron Correlation and Field Pulse Ionization in Atoms

Xiao Wang (6752255) 16 August 2019 (has links)
Quantum mechanics and atomic, molecular, optical (AMO) physics have been widely studied in the past century. This dissertation covers several topics in the field of AMO physics that were the focus of my Ph.D. studies, both theoretical and computational.<div><br></div><div>The first topic is related to trapping of Rydberg atoms inside an optical trap. The study focuses on the trapping energy and state mixing of Rydberg atoms based on different angular momentum state and spin-orbit coupling of the Rydberg electron. </div><div><br></div><div>The second topic is the two-electron correlations in an atom, especially double Rydberg wave packets. We have focused on the rapid autoionization and angular momentum exchanges between the double Rydberg wave packets. Then, the study of two-electron correlation is extended to the post-collision interaction (PCI) in Auger decay and a sequential ionization model. Quantum interference patterns can be found in the final correlated distributions. In the PCI study, quantum calculations and semiclassical calculations are performed to interpret the interference patterns. </div><div><br></div><div>The last topic is the ionization behavior of one-electron Rydberg atoms from a terahertz single-cycle pulse. We investigate and compare the different ionization probabilities of a Rydberg electron from an initial stationary state and a wave packet. Also, studies of the ionization behavior are extended to scaled parameters, where all physical parameters of the electron and field pulses are scaled.</div>
362

Counteraction of urea-induced protein denaturation by Trimethylamine N-oxide

VANTARAKI, CHRISTINA January 2019 (has links)
A common consequence of protein denaturation is the loss of biological activity. Natural osmolytes such as Trimethylamine N-oxide (TMAO) contribute to protein folding, whereas other osmolytes such as urea act as an agent in the denaturation of proteins. Many studies have shown that denaturation of proteins could occur for certain concentrations of urea, however, this effect could be prevented with the presence of Trimethylamine N-oxide (TMAO) molecules. The aim of the present study is to find out the mechanism of TMAO as a protein stabilizer against urea. Firstly, Molecular Dynamics simulations were carried out for 1, 8, 27 and 64 TMAO molecules. The time-average location of the TMAO molecules during the simulation was studied by the partial density. These simulations examine if TMAO is amphiphilic molecule, i.e contains both hydrophobic and hydrophilic parts. However, these results might not be representative due to bad statistics. Secondly, an experiment ran at BESSY II at Helmholtz-Zentrum Berlin using X-ray Photoelectron Spectroscopy in liquids. In this experiment, Lauryldimethylamine oxide(LDAO) was used instead of Trimethylamine N-oxide (TMAO) due to some practical reasons. The behaviour of urea and LDAO molecule was studied when these molecules were in different and same solutions. The purpose of this experiment is to find out the mechanism of LDAO against urea. Finally, LDAO interacts with urea and a possible mechanism between them is suggested. A common consequence of protein denaturation is the loss of biological activity. Natural osmolytes such as Trimethylamine N-oxide (TMAO) contribute to protein folding, whereas other osmolytes such as urea act as an agent in the denaturation of proteins. Many studies have shown that denaturation of proteins could occur for certain concentrations of urea, however, this effect could be prevented with the presence of the Trimethylamine N-oxide (TMAO) molecules. The aim of the present study is to find out the mechanism of TMAO as a protein stabilizer against urea. Firstly, Molecular Dynamics simulations were carried out for 1, 8, 27 and 64 TMAO molecules. The time-average location of TMAO molecules during the simulation was studied by the partial density. These simulations examine if TMAO is amphiphilic molecule, i.e contains both hydrophobic and hydrophilic parts. However, these results might not be representative due to bad statistics. Secondly, an experiment ran at BESSY II at Helmholtz-Zentrum Berlin using X-ray Photoelectron Spectroscopy in liquids. In this experiment, Lauryldimethylamine oxide (LDAO) was used instead of Trimethylamine N-oxide (TMAO) due to some practical reasons. The behaviour of urea and LDAO molecule was studied when these molecules were in different and same solutions. The purpose of this experiment is to find out the mechanism of LDAO against urea. Finally, LDAO interacts with urea and a possible mechanism between them is suggested. / <p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p>
363

Studies of Molecular Carbon Cluster Dianions in DESIREE

Kiselman, Klara January 2019 (has links)
Since the surprising first detection of small carbon cluster dianions by Compton et al 1990, several studies have been made investigating their structure, fragmentation pathways and stability. As other carbon anions have been found in space, it is likely that these dianions exists as well and their ability to react with other molecules is therefore of interest. Previous studies have shown that they may survive on microsecond timescales, but it is still an open question whether they are metastable or thermodynamically stable. Therefore, this study utilizes the cyrogenic storage ring DESIREE to investigate the lifetime and stability of carbon cluster dianions Cn(2-) (n=7-10) in the new domains. Dianions were produced with a cesium ion sputtering source and their spontaneous decay Cn(2-) -&gt; Cn(-) + e- was monitored for almost 100 ms by detection of the singly charged decay products. Also, the extra electron's tunneling probability through the repulsive coloumb barrier for C8(2-) was calculated and the lifetime for different energy states was estimated. Analyzing the DESIREE data, the lifetime of the dianions could be determined to exceed the previous concluded lifetimes of 10 us by a whole order of magnitude. The only way to detect stable ions after that would be if they collided with rest gas and due to good vacuum, this eventual signal is too low. Probably due to varying structures, an alternating pattern was found, dianions with even n decaying slower than their odd neighbours. The fitting of power laws to the data is consistent with that the dianions were produced with a broad internal energy distribution. Calculations for C8(2-) indicated that its electron affinity had to be at least -1eV in order to agree with the experimental results. Continuing the investigations, future studies could, after sufficient time, use DESIREE in an alternative way, allowing detection of possible stable dianions.
364

Evaluation of properties of a digital micromirror device applied for light shaping

Eriksson, Ronja January 2019 (has links)
No description available.
365

Energy-loss spectroscopy in scanning transmission electron microscopy

Stephens, Adrian Paul January 1981 (has links)
No description available.
366

Modeling the cavity dispersion in cavity-enhanced optical frequency comb Fourier transform spectroscopy

Hjältén, Adrian January 2018 (has links)
Cavity enhanced optical frequency comb spectroscopy is a technique that allows for quick and sensitive measurements of molecular absorption spectra. Locking the comb lines of an optical frequency comb to the cavity modes of an enhancement cavity and then extracting the spectral information with a Fourier transform spectrometer grants easy access to wide segments of absorption spectra. One of the main obstacles complicating the analysis of the measurements is the inevitable dispersion occurring inside the cavity. In this project, absorption measurements of CO2 were performed using an existing and well established setup consisting of a near-infrared optical frequency comb locked to a Fabry- Pérot enhancement cavity using the Pound-Drever-Hall technique, and a Fourier transform spectrometer. The purpose was to improve theoretical models of the measured absorption spectra by creating and verifying a model for the cavity dispersion, stemming mostly from the cavity mirrors but also from the normal dispersion of the intracavity medium. Until now, the cavity dispersion has been treated as an unknown and was included as a fitting parameter together with the CO2 concentration when applying fits to the absorption measurements. The dispersion model was based on previously performed precise measurements of the positions of the cavity modes. The model was found to agree well with measurements. In addition, pre-calculating the dispersion drastically reduced computation time and seemed to improve the overall robustness of the fitting routine. A complicating factor was found to be small discrepancies between the locking frequencies as determined prior to the measurements and the values yielding optimum agreement with the model. These apparent shifts of the locking points were found to have a systematic dependence on the distance between the locking points. The exact cause of this was not determined but the results indicate that with the locking points separated by more than about 10nm the shifts are negligible.
367

Atomic vapours filled hollow core photonic crystal fibre for magneto-optical spectroscopy

Bradley, Thomas David January 2014 (has links)
This thesis describes developments in atomic vapour loading in hollow core photonic crystal fibre (HC-PCF) for fabrication of atomic vapour loaded photonic microcells (PMC). These developments have been targeted at addressing some of the issues associated with loading atomic vapours in confined waveguiding geometries such as increased dephasing and physio-chemical wall absorptions. Atomic vapour loaded HC-PCF and PMC’s have applications in laser metrology, coherent optics and magneto optical spectroscopy. State of the art HC-PCF have been fabricated for loading with atomic vapour including both photonic bandgap (PBG) guiding and inhibited coupling (IC) hypocycloidal core shape Kagome HC-PCF. Record loss of 70 dB/km has been achieved in IC hypocycloid core shape Kagome HC-PCF in the spectral region centred at 800 nm. This fibre retains excellent single mode propagation combined with large core and increased optical bandwidth in comparison with specialist PBG HC-PCF optimised for operation around 800 nm. Aluminosilicate sol-gel coatings have been developed and successfully applied to the inner core wall of HC-PCF’s to reduce the atomic vapour surface interaction. Confining atomic vapours in micron scaled HC-PCF results in increased dephasing rates because of the frequent atom wall collisions. Anti relaxation coating materials have been applied to the inner core wall and the longitudinal relaxation time has been measured in coated and uncoated fibres utilising a magneto optical technique. Additionally sub Doppler transparencies are investigated in anti relaxation coated and uncoated HC-PCF.
368

Trace gas detection using diode lasers

Johnson, Simon Anthony January 1986 (has links)
No description available.
369

Theoretical and experimental studies of molecular polarizabilities

Hands, Ian David January 1994 (has links)
No description available.
370

Preparation and Characterisation of Sputtered Titanium- and Zirconium Nitride Optical Films

Andersson, Kent January 1993 (has links)
Multilayered interference coatings based on titanium- and zirconium nitride and designed for solar control have been prepared using reactive d c magnetron sputtering. Preparation effects and degradation mechanisms were investigated. It was shown that the quality of the nitride strongly depends on the degree of crystallinity in the underlying oxide. It has been shown that the nitride layer partly oxidizes as the top oxide layer is deposited. The degradation is enhanced with temperature. A thin sacrificial layer of aluminium deposited between successive depositions of nitride and oxide is shown to improve the optical performance of the coating as preparedm as well as after accelerated ageing tests. The optical properties of opaque and semitransparent films of zirconium nitride have been studied. A thorough investigation of the influence of composition, deposition rate, substrate temperature and film thickness on the optical response of the film was performed. Both photometric and ellipsometric methods were used to determine thicknesses and the optical constants at wavelengths ranging from 0.23 to 25 μm. The resulting values of n and k, in the wavelength intervals where these independent methods are applicable, have been shown to agree extremely well. The results so far indicate an even larger potential for zirconium nitride based solar control coatings as compared to the titanium nitride based. Access to optical constants derived from films of zirconium nitride of variable quality made multilayer modelling a powerful tool in the design and analysis of solar control coatings.

Page generated in 0.0373 seconds