• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 3
  • Tagged with
  • 6
  • 6
  • 6
  • 6
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Stochastic models of molecular mechanisms in biology

趙崇諾, Chiu, Sung-nok. January 1992 (has links)
published_or_final_version / Statistics / Master / Master of Philosophy
2

Structure-function relationships in eukaryotic and prokaryotic family 6 glycosyltransferases

Unknown Date (has links)
Carbohydrate Active Enzyme family 6 (CA6) glycosyltransferases (GTs) are type II transmembrane proteins localized in the Golgi apparatus. CA6 GTs have a GT-A fold, a type of structure that resembles the Rossman fold and catalyze the transfer either galactose (Gal) or N-acetylgalactosamine (GalNAc) from the UDP nucleotide sugar to an non-reducing terminal Gal or GalNAc on an acceptor via an a-1,3 linkage. In this reaction, the anomeric configuration of the sugar moiety of the donor is retained in the product. CA6 GTs includes the histo-blood group A and B GTs, a-galactosyltransferase (a3GT), Forssman glycolipid synthase (FS), isogloboside 3 synthase (iGb3) in mammals. a3GT and its products (a-Gal epitode) are present in most mammals but are absent in humans and old world primates because of inactivating mutations. The absence of a3GT and its products results in the production of anti-a-Gal epitope natural antibodies in these species. / Up to date, the catalytic mechanisms of the CA6 GTs are not well understood. Based on previous structural and mutagenesis studies of bovine aB3GT, we investigated active site residues (His315, Asp316, Ser318, His319, and Lys359) that are highly conserved among CA6 GTs. We have also investigated the role of the C-terminal region by progressive C-terminal truncations. Findings from these studies clarify the functional roles of these residues in structure, catalysis, and specificity in these enzymes and have implications for their catalytic mechanisms. GTs are useful tools in synthesis of glycans for various applications in science and medicine. Methods for the large scale production of pure glycans are continuously being developed. We created a limited randomized combinatorial library based on knowledge of structural information and sequence analysis of the enzyme and its mammalian homologues. / Two GalNAc-specific variants were identified from the library and one Glc-specific variant was identified by site-direct mutagenesis. The glycosyltransferase activities of these variants are expected to be improved by further screens of libraries which are designed using the variants as templates. The mammalian CA6 GTs that have been characterized to date are metal-independent and require the divalent cation, Mn2+ for activity. In some recently-discovered bacterial CA6 GTs, the DXD sequence that is present in eukaryotic GTs is replaced by NXN. We cloned and expressed one of these proteins from Bacteroides ovatus, a bacterium that has been linked with inflammatory bowel disease. Functional characterization shows it is a metal-independent monomeric GT that efficiently catalyzes the synthesis of oligosaccharides similar to human blood group A glycan. / Mutational studies indicated that despite the lack of a metal cofactor there are similarities in structure-function relationships between the bacterial and vertebrate family 6 GTs. / by Percy Tumbale. / Thesis (Ph.D.)--Florida Atlantic University, 2009. / Includes bibliography. / Electronic reproduction. Boca Raton, Fla., 2009. Mode of access: World Wide Web.
3

Emergent Properties of Biomolecular Organization

Tsitkov, Stanislav January 2021 (has links)
The organization of molecules within a cell is central to cellular processes ranging from metabolism and damage repair to migration and replication. Uncovering the emergent properties of this biomolecular organization can improve our understanding of how organisms function and reveal ways to repurpose their components outside of the cell. This dissertation focuses on the role of organization in two widely studied systems: enzyme cascades and active cytoskeletal filaments.Part I of this dissertation studies the emergent properties of the spatial organization of enzyme cascades. Enzyme cascades consist of a series of enzymes that catalyze sequential reactions: the product of one enzyme is the substrate of a subsequent enzyme. Enzyme cascades are a fundamental component of cellular reaction pathways, and spatial organization of the cascading enzymes is often essential to their function. For example, cascading enzymes assembled into multi-enzyme complexes can protect unstable cascade intermediates from the environment by forming tunnels between active sites. We use mathematical modeling to investigate the role of spatial organization in three specific systems. First, we examine enzyme cascade reactions occurring in multi-enzyme complexes where active sites are connected by tunnels. Using stochastic simulations and theoretical results from queueing theory, we demonstrate that the fluctuations arising from the small number of molecules involved can cause non-negligible disruptions to cascade throughput. Second, we develop a set of design principles for a compartmentalized cascade reaction with an unstable intermediate and show that there exists a critical kinetics-dependent threshold at which compartments become useful. Third, we investigate enzyme cascades immobilized on a synthetic DNA origami scaffold and show that the scaffold can create a favorable microenvironment for catalysis. Part II of this dissertation focuses on the organization of active cytoskeletal filaments. Many mechanical processes of a cell, such as cell division, cell migration, and intracellular transport, are driven by the ATP-fueled motion of motor proteins (kinesin, dynein, or myosin) along cytoskeletal filaments (microtubules or actin filaments). Over the past two decades, researchers have been repurposing motor protein-driven propulsion outside of the cell to create systems where cytoskeletal filaments glide on surfaces coated with motor proteins. The study of these systems not only elucidates the mechanisms of force production within the cell, but also opens new avenues for applications ranging from molecular detection to computation. We examine how microtubules gliding on surfaces coated with kinesin motor proteins can generate collective behavior in response to mutualistic interactions between the filaments and motors, thereby maximizing the utilization of system components and production. To this end, we used a microtubule-kinesin system where motors reversibly bind to the surface. In experiments, microtubules gliding on these reversibly bound motors were unable to cross each other and at high enough densities began to align and form long, dense bundles. The kinesin motors accumulated in trails surrounding the microtubule bundles and participated in microtubule transport. In conclusion, our study of the emergent properties of the spatial organization of enzyme cascades and the mutualistic interactions within active systems of motor proteins and cytoskeletal filaments provides insight into both how these systems function within cells and how they can be repurposed outside of them.
4

Population genetic analysis of the black blow fly Phormia regina (Meigen) (Diptera: Calliphoridae)

Whale, John W. January 2015 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / The black blow fly, Phormia regina (Diptera: Calliphoridae), is a widely abundant fly autochthonous to North America. Like many other Calliphorids, P. regina plays a key role in several disciplines particularly in estimating post-mortem intervals (PMI). The aim of this work was to better understand the population genetic structure of this important ecological species using microsatellites from populations collected in the U.S. during 2008 and 2013. Additionally, it sought to determine the effect of limited genetic diversity on a quantitative trait throughout immature development; larval length, a measurement used to estimate specimen age. Observed heterozygosity was lower than expected at five of the six loci and ranged from 0.529-0.880 compared to expected heterozygosity that ranged from 0.512-0.980, this is indicative of either inbreeding or the presence of null alleles. Kinship coefficients indicate that individuals within each sample are not strongly related to one another; values for the wild-caught populations ranged from 0.033-0.171 and a high proportion of the genetic variation (30%) can be found among samples within regions. The population structure of this species does not correlate well to geography; populations are different to one another resulting from a lack of gene flow irrespective of geographic distance, thus inferring temporal distance plays a greater role on the genetic variation of P. regina. Among colonized samples, flies lost much of their genetic diversity, ≥67% of alleles per locus were lost, and population samples became increasingly more related; kinship coefficient values increased from 0.036 for the wild-caught individuals to 0.261 among the F10 specimens. Colonized larvae also became shorter in length following repeated inbreeding events, with the longest recorded specimen in F1 18.75 mm in length while the longest larva measured in F11 was 1.5 mm shorter at 17.25 mm. This could have major implications in forensic entomology, as the largest specimen is often assumed to be the oldest on the corpse and is subsequently used to estimate a postmortem interval. The reduction in length ultimately resulted in a greater proportion of individuals of a similar length; the range of data became reduced. Consequently, the major reduction in genetic diversity indicates that the loss in the spread of length distributions of the larvae may have a genetic influence or control. Therefore, this data highlights the importance when undertaking either genetic or development studies, particularly of blow flies such as Phormia regina, that collections of specimens and populations take place not only from more than one geographic location, but more importantly from more than one temporal event.
5

A Computational Study of the Mechanism for F1-ATPase Inhibition by the Epsilon Subunit

Thomson, Karen J. January 2013 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / The multi-protein complex of F0F1 ATP synthase has been of great interest in the fields of microbiology and biochemistry, due to the ubiquitous use of ATP as a biological energy source. Efforts to better understand this complex have been made through structural determination of segments based on NMR and crystallographic data. Some experiments have provided useful data, while others have brought up more questions, especially when structures and functions are compared between bacteria and species with chloroplasts or mitochondria. The epsilon subunit is thought to play a signi cant role in the regulation of ATP synthesis and hydrolysis, yet the exact pathway is unknown due to the experimental difficulty in obtaining data along the transition pathway. Given starting and end point protein crystal structures, the transition pathway of the epsilon subunit was examined through computer simulation.The purpose of this investigation is to determine the likelihood of one such proposed mechanism for the involvement of the epsilon subunit in ATP regulation in bacterial species such as E. coli.
6

De novo genome assembly of the blow fly Phormia regina (Diptera: Calliphoridae)

Andere, Anne A. January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Phormia regina (Meigen), commonly known as the black blow fly is a dipteran that belongs to the family Calliphoridae. Calliphorids play an important role in various research fields including ecology, medical studies, veterinary and forensic sciences. P. regina, a non-model organism, is one of the most common forensically relevant insects in North America and is typically used to assist in estimating postmortem intervals (PMI). To better understand the roles P. regina plays in the numerous research fields, we re-constructed its genome using next generation sequencing technologies. The focus was on generating a reference genome through de novo assembly of high-throughput short read sequences. Following assembly, genetic markers were identified in the form of microsatellites and single nucleotide polymorphisms (SNPs) to aid in future population genetic surveys of P. regina. A total 530 million 100 bp paired-end reads were obtained from five pooled male and female P. regina flies using the Illumina HiSeq2000 sequencing platform. A 524 Mbp draft genome was assembled using both sexes with 11,037 predicted genes. The draft reference genome assembled from this study provides an important resource for investigating the genetic diversity that exists between and among blow fly species; and empowers the understanding of their genetic basis in terms of adaptations, population structure and evolution. The genomic tools will facilitate the analysis of genome-wide studies using modern genomic techniques to boost a refined understanding of the evolutionary processes underlying genomic evolution between blow flies and other insect species.

Page generated in 0.3816 seconds