• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 117
  • 33
  • 10
  • 6
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 205
  • 205
  • 75
  • 44
  • 35
  • 35
  • 30
  • 25
  • 17
  • 17
  • 16
  • 16
  • 13
  • 13
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Investigations into Multivalent Ligand Binding Thermodynamics

Watts, Brian Edward January 2015 (has links)
<p>Virtually all biologically relevant functions and processes are mediated by non-covalent, molecular recognition events, demonstrating astonishingly diverse affinities and specificities. Despite extensive research, the origin of affinity and specificity in aqueous solution - specifically the relationship between ligand binding thermodynamics and structure - remains remarkably obscure and is further complicated in the context of multivalent interactions. Multivalency describes the combinatorial interaction of multiple discrete epitopes across multiple binding surfaces where the association is considered as the sum of contributions from each epitope and the consequences of multivalent ligand assembly. Gaining the insight necessary to predictably influence biological processes with novel therapeutics begins with an understanding of the molecular basis of solution-phase interactions, and the thermodynamic parameters that follow from those interactions. Here we continue our efforts to understand the basis of aqueous affinity and the nature of multivalent additivity.</p><p>Multivalent additivity is the foundation of fragment-based drug discovery, where small, low affinity ligands are covalently assembled into a single high affinity inhibitor. Such systems are ideally suited for investigating the thermodynamic consequences of multivalent ligand assembly. In the first part of this work, we report the design and synthesis of a fragment-based ligand series for the Grb2-SH2 protein and thermodynamic evaluation of the low affinity ligand fragments compared to the intact, high affinity inhibitor by single and double displacement isothermal titration calorimetry (ITC). Interestingly, our investigations reveal positively cooperative multivalent additivity - a binding free energy of the full ligand greater than the sum of its constituent fragments - that is largely enthalpic in origin. These results contradict the most common theory of multivalent affinity enhancement arising from a "savings" in translational and rotational entropy. The Grb2-SH2 system reported here is the third distinct molecular system in which we have observed enthalpically driven multivalent enhancement of affinity.</p><p>Previous research by our group into similar multivalent affinity enhancements in protein-carbohydrate systems - the so-called "cluster glycoside effect" - revealed that evaluation of multivalent interactions in the solution-phase is not straightforward due to the accessibility of two disparate binding motifs: intramolecular, chelate-type binding and intermolecular, aggregative binding. Although a number of powerful techniques for evaluation of solution-phase multivalent interactions have been reported, these bulk techniques are often unable to differentiate between binding modes, obscuring thermodynamic interpretation. In the second part of this work, we report a competitive equilibrium approach to Molecular Recognition Force Microscopy (MRFM) for evaluation of ligand binding at the single-molecule level with potential to preclude aggregative associations. We have optimized surface functionalization strategies and MRFM experimental protocols to evaluate the binding constant of surface- and tip-immobilized single stranded DNA epitopes. Surprisingly, the monovalent affinity of an immobilized species is in remarkable agreement with the solution-phase affinity, suggesting the competitive equilibrium MRFM approach presents a unique opportunity to investigate the nature of multivalent additivity at the single molecule level.</p> / Dissertation
92

Evolving complex systems from simple molecules

Sadownik, Jan January 2009 (has links)
Until very recently, synthetic chemistry has focussed on the creation of chemical entities with desirable properties through the programmed application of isolated chemical reactions, either individually or in a cascade that afford a target compound selectively. By contrast, biological systems operate using a plethora of complex interconnected signaling and metabolic networks with multiple checkpoint controls and feedback loops allowing biological systems to adapt and respond rapidly to external stimuli. Systems chemistry attempts to capture the complexity and emergent phenomena prevalent in the life sciences within a wholly synthetic chemical framework. In this approach, complex phenomena are expressed by a group of synthetic chemical entities designed to interact and react with many partners within the ensemble in programmed ways. In this manner, it should be possible to create synthetic chemical systems whose properties are not simply the linear sum of the attributes of the individual components. Chapter 1 discusses the role of complex networks in various aspects of chemistry- related research from the origin of life to nanotechnology. Further, it introduces the concept of Systems chemistry, giving various examples of dynamic covalent networks, self-replicating systems and molecular logic gates, showing the applications of complex system research. Chapter 2 discusses the components of replicator design. Further, it introduces a network based on recognition mediated reactions that is implemented by length- segregation of the substrates and displays properties of self-sorting. Chapter 3 presents a fully addressable chemical system based on auto- and cross- catalytic properties of product templates. The system is described by Boolean logic operations with different template inputs giving different template outputs. Chapter 4 introduces a dynamic network which fate is determined by a single recognition event. The replicator is capable of exploiting and dominating the exchanging pool of reagents in order to amplify its own formation at the expense of other species through the non-linear kinetics inherent in minimal replication. Chapter 5 focuses on the development of complex dynamic systems from structurally simple molecules. The new approach allows creating multicomponent networks with many reaction pathways operating simultaneously from readily available substrates.
93

Development of artificial metalloenzymes via covalent modification of proteins

Popa, Gina January 2010 (has links)
Development of selective artificial metalloenzymes by combining the biological concepts for selective recognition with those of transition metal catalysis has received much attention during the last decade. Targeting covalent incorporation of organometallic catalysts into proteins, we explored site-selective covalent coupling of phosphane and N–containing ligands. The successful approach for incorporation of phosphane ligands we report herein consists of site-specific covalent coupling of a maleimide functionalized hydrazide into proteins, followed by coupling of aldehyde functionalized phosphanes via a hydrazone linkage. Site selective incorporation of N–containing ligands was obtained by coupling maleimide functionalized N–ligands to proteins via Michael addition to the maleimide double bond. These two methods can be easily applied to virtually any protein displaying a single reactive cysteine and allows a wide range of possibilities in terms of cofactor design. Site-specific covalent incorporation of transition metal complexes of phosphane ligands into proteins was successfully obtained. The success of the approach is influenced by several factors like the metal precursor, the phosphane type and the protein scaffold. Metal complexes of 5–maleimido–1,10–phenanthroline modified proteins were formed in situ, via addition of a metal precursor to the phenanthroline modified proteins or by coupling preformed metal complexes to proteins via Michael addition of the thiol group from a cysteine residue to the maleimide double bond of the N-ligand. These successful coupling methods enable the use of a wide range of protein structures as templates for the preparation of artificial transition metalloenzymes, which opens the way to full exploration of the power of selective molecular recognition of proteins in transition metal catalysis.
94

The preparation and evaluation of N-acetylneuraminic acid derivatives as probes of sialic acid-recognizing proteins

Ciccotosto, Silvana January 2004 (has links)
Abstract not available
95

Fluorescent functional DNA for bioanalysis, drug discovery and nanotechnology

Nutiu, Razvan. Li, Yingfu. January 2006 (has links)
Thesis (Ph.D.)--McMaster University, 2006. / Supervisor: Yingfy Li. Includes bibliographical references (leaves 151-167).
96

Peptide Conjugates as Useful Molecular Tools

Ślósarczyk, Adam T. January 2011 (has links)
The conjugation of a small organic molecule to synthetic polypeptides from a designed set has been shown to give rise to binders with high affinity and selectivity for the phosphorylated model proteins α-casein and β-casein but not for ovoalbumin. The small organic molecule that was used for this purpose is comprised of two di-(2-picolyl)amine groups assembled on a dimethylphenyl scaffold, and is capable of complexing two Zn2+ ions to form chelates that bind the phosphate ion. The designed polypeptides used for binder construction have no precedence in nature and do not show any prior selectivity favouring any single protein. The polypeptide conjugate binders showed high affinity towards the model protein α-casein, the binder molecule 4C15L8-PP1 bound α-casein with a dissociation constant KD of 17 nM, although the di-(2-picolyl) amine based chelate in the presence of Zn2+ bound phosphate ion with dissociation constants in the low mM range. The observed affinity is due to interactions between the Zn2+ chelate and the phosphate groups of α-casein and also to interactions between the polypeptide scaffold and α-casein. The binder was found to selectively extract α-casein from buffer, bovine milk and human serum spiked with α-casein. The flexible construction of the binder permits for flexible modifications like attachment of fluorophores for titrations and quantifications. The binders were shown to efficiently capture α-casein from human serum when immobilized on solid support in a continuous flow system and to release the captured α-casein upon a simple change of pH using 0.1% acqueous trifluoroacetica acid. The developed technology brings new opportunities in investigating posttranslational phosphorylation events that are involved in signaling cascades and triggering many biologically relevant functions. A new chemical linker technology has also been developed for the purpose of conjugating biomolecules taking advantage of amino groups for the conjugation. By combining two esters with different reactivities, separated by an aliphatic chain, a molecular tool was developed that allows for controlled conjugation of biomolecules. The two esters react at different rates and can therefore be separated and allowed to react under different conditions in each step, thereby allowing for selective linkage formation between the subunits. The size of the spacer can be varied by selecting the appropriate dicarboxylic acid. The developed technology was shown to provide specificity in heteroconjugate formation in the assembly of a variety of heteroconjugates where polypeptides were combined with other peptides, carbohydrates and proteins.
97

Thermodynamic Studies of Halogen Bonding in Solution and Application to Anion Recognition

Sarwar, Md. Golam 19 December 2012 (has links)
Halogen bonding (XB), the interaction between electron deficient halogen compounds and electron donors, is an established non-covalent interaction in the solid and gaseous phases. Understanding of XB in the solution phase is limited. This thesis describes experimental studies of XB interactions in solution, and the application of XB interactions in anion recognition. Chapter 1 is a brief review of current understanding of XB interaction: theoretical models, studies of XB in solid and gaseous phases and examples in biological systems are discussed. At the end of this chapter, halogen bonding in the solution phase is discussed, along with applications of halogen bonding in organic syntheses. In chapter 2, linear free energy relationships involving the thermodynamics of halogen bonding of substituted iodoaromatics are studied. The utility of substituent constants and calculated molecular electrostatic potential values as metrics of halogen bond donor ability are discussed. Density Functional Theory (DFT) calculations are shown to have useful predictive values for trends in halogen bond strength for a range of donor-acceptor pairs. Chapter 3 describes the development of new multidentate anion receptors based on halogen bonding. Bidentate and tridentate receptors were found to exhibit significantly higher binding constants than simple monodentate donors. These receptors show selectivity for halide anions over oxyanions. Using 19F NMR spectra at different temperature, the enthalpies and entropies of anion bindings for monodentate and tridentate receptors were determined. The results indicate a positive entropy contribution to anion binding for both mono and tridentate receptors in acetone solvent. Finally in chapter 4, some mesitylene based receptors with 3-halopyridinium and 2-iodobenzimidazolium donors are introduced. The receptors perform halide anion recognition in aqueous solvent system through charge-assisted XB interactions. These findings can allude to utility in organic synthesis, supramolecular chemistry and drug design.
98

Thermodynamic Studies of Halogen Bonding in Solution and Application to Anion Recognition

Sarwar, Md. Golam 19 December 2012 (has links)
Halogen bonding (XB), the interaction between electron deficient halogen compounds and electron donors, is an established non-covalent interaction in the solid and gaseous phases. Understanding of XB in the solution phase is limited. This thesis describes experimental studies of XB interactions in solution, and the application of XB interactions in anion recognition. Chapter 1 is a brief review of current understanding of XB interaction: theoretical models, studies of XB in solid and gaseous phases and examples in biological systems are discussed. At the end of this chapter, halogen bonding in the solution phase is discussed, along with applications of halogen bonding in organic syntheses. In chapter 2, linear free energy relationships involving the thermodynamics of halogen bonding of substituted iodoaromatics are studied. The utility of substituent constants and calculated molecular electrostatic potential values as metrics of halogen bond donor ability are discussed. Density Functional Theory (DFT) calculations are shown to have useful predictive values for trends in halogen bond strength for a range of donor-acceptor pairs. Chapter 3 describes the development of new multidentate anion receptors based on halogen bonding. Bidentate and tridentate receptors were found to exhibit significantly higher binding constants than simple monodentate donors. These receptors show selectivity for halide anions over oxyanions. Using 19F NMR spectra at different temperature, the enthalpies and entropies of anion bindings for monodentate and tridentate receptors were determined. The results indicate a positive entropy contribution to anion binding for both mono and tridentate receptors in acetone solvent. Finally in chapter 4, some mesitylene based receptors with 3-halopyridinium and 2-iodobenzimidazolium donors are introduced. The receptors perform halide anion recognition in aqueous solvent system through charge-assisted XB interactions. These findings can allude to utility in organic synthesis, supramolecular chemistry and drug design.
99

Molecular Recognition in Host-Guest Ionophore-Siderophore Assemblies

Tristani, Esther Marie January 2010 (has links)
<p>This work examines the characterization of supramolecular assemblies and, more specifically, host-guest complexes involved in molecular recognition events. The supramolecular assemblies studied take root from metal ion delivery in biological uptake pathways, specifically the delivery of iron to microbial cells. These assemblies are studied in an effort to further understand the nature of molecular recognition events, specifically the nature and strength of interactions between a host and a guest, and possible applications of these systems. </p> <p>The development of a mass spectral method by which to characterize supramolecular assemblies involving the cation binding hosts 18-crown-6, benzo-18-crown-6, dicyclohexano-18-crown-6, and dibenzo-18-crown-6 macrocycles, and the linear ionophore lasalocid with cationic guests, including substituted protonated amines and the iron siderophore ferrioxamine B is presented. Methodology was developed using ESI-MS to successfully quantitate host-guest interactions in binary and complex mixtures. Binding constants were obtained in the range of log Ka = 3 - 5 and correspond to similar systems previously studied in the literature. The studies presented here further our understanding of the molecular recognition events that must occur between a siderophore and a receptor and provide an improved method by which to measure the strength of their interaction. </p> <p>The effects of redox hosts on host-guest complex formation with ferrioxamine B and the characterization of the host-guest complexes formed and the strength of the interactions between them were studied using cyclic voltammetry, ESI-MS, FAB-MS and ITC. A shift in redox potential towards more positive values is observed upon addition of a cationic siderophore guest to a solution of a redox-active para-Wurster's aza crown or mono-substituted Wurster's aza crown macrocycle. Mass spectral evidence indicates the formation of a host-guest complex between the cationic siderophore and the redox host. A redox switch mechanism is proposed, whereby the redox state of the host influences the binding affinity between the host and guest and, consequently, host-guest complex formation. These systems offer a unique means by which to modulate the uptake or release of ionic guests from a cavity by using externally controlled methods and can be applied to selective metal ion compartmentalization. </p> <p>Finally, the application of supramolecular assemblies as a tool in the field of drug delivery is presented. The covalent attachment of an antimalarial drug, artemisinin, by our collaborators to a siderophore produced by M. Tuberculosis, mycobactin, facilitates the subsequent delivery of the drug into the microbial cell by taking advantage of the natural biological iron uptake pathway. Here, the molecular recognition event and supramolecular assembly of interest is that occurring between the siderophore-drug assembly and the microbial receptor. Characterization of the siderophore-drug assembly using cyclic voltammetry shows that there is an interaction between the Fe-mycobactin and artemisinin when these are covalently attached in the form of a conjugate. Increased current output is observed due to an intramolecular electron transfer between the two components. Based on these in vitro data, we propose a redox mechanism by which the drug-siderophore conjugate exhibits a therapeutic effect in vivo.</p> / Dissertation
100

New Approaches To Studying Non-Covalent Molecular Interactions In Nano-Confined Environments

Carlson, David Andrew January 2010 (has links)
<p>The goal of this work is to develop novel molecular systems, functionalization techniques, and data collection routines with which to study the binding of immobilized cognate binding partners. Our ultimate goal is the routine evaluation of thermodynamic parameters for immobilized systems through interpretation of the variation of the binary probability of binding as a function of soluble ligand concentration. The development of both data collection routines that minimize non-specific binding and functionalization techniques that produce stable ordered molecular systems on surfaces are of paramount importance towards achievement of this goal. Methodologies developed here will be applied to investigating the thermodynamics of multivalent systems.</p><p>In the first part of this work, the effect of contact force on molecular recognition force microscopy experiments was investigated. Increased contact forces (>250 pN) resulted in increased probabilities of binding and decreased blocking efficiencies for the cognate ligand-receptor pair lactose-G3. Increased contact force applied to two control systems with no known affinity, mannose-G3 and lactose-KDPG aldolase resulted in non-specific ruptures that were indistinguishable from those of specific lactose-G3 interactions. Thus, it is essential to design data collections routines that minimize contact forces to ensure that ruptures originate from specific, blockable interactions.</p><p>In the second part of this work we report the first example of the preparation of stable self assembled monolayers through hydrosilylation of a protected aminoalkene onto hydrogen-terminated silicon nitride AFM probes and subsequent conjugation with biomolecules for force microscopy studies. Our technique can be used as a general attachment technique for other molecular systems.</p><p>In the third part of this work we develop novel molecular systems for tethering oriented vancomycin and its cognate binding partner L-Lys-D-Ala-D-Ala to surfaces and AFM tips. Unbinding experiments demonstrated that traditional methods for forming low surface density amine layers (silanization with APTMS and etherification with ethanolamine) provided molecular constructs which displayed probabilities of binding that were too low and showed overall variability too high to use for probabilistic evaluation of thermodynamics parameters. Instability and heat-induced polymerization of APTMS layers on tips and surfaces also prohibited their utility. Formation of Alkyl SAMs on silicon provides a more reliable, stable molecular system anchored by Si-C bonds that facilitates attachment of vancomycin and is capable of withstanding prolonged exposure to heated organic and aqueous environments. It follows that covalent immobilization of KDADA to silicon nitride AFM tips via Si-C bonds using hydrosilylation chemistry will be similarly advantageous. These methods offer great promise for probabilistic evaluation of thermodynamic parameters characterizing immobilized binding partners and will permit unambiguous determination of the role of multivalency in ligand binding, using an experimental configuration in which intermolecular binding and aggregation are precluded.</p> / Dissertation

Page generated in 0.0979 seconds