• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • Tagged with
  • 6
  • 6
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

STM Investigation of Electric Polar Molecular Self-Assembly and Artificial Electric Polar Molecular Rotors

Zhang, Yuan January 2014 (has links)
No description available.
2

Molecular Machines: Design, Synthesis and Characterization

Aiboudi, Oumaima 03 May 2023 (has links)
This dissertation presents the results of interdisciplinary research, at the crossing of chemistry and physics. Rational design strategies have been developed towards the synthesis of novel molecular machines able to produce a mechanical output at the nanoscale. LT-UHV STM measurements have been performed to manipulate these molecules using electrical voltage pulses as input. Two classes of molecule with different properties have been chosen as core of the designs; azulene due to the high dipole moment when an appropriate substitution pattern is selected and DMBI (1,3 dimethyl 2 phenyl 2,3 dihydro 1 H benzoimidazol) because of the zwitterionic nature. One can assume that these two distinct key features might facilitate a distinct and controllable molecule response to the external electrical field of the STM tip.
3

STM Investigation of Charge-Transfer and Spintronic Molecular Systems

Perera, Uduwanage Gayani E. 25 April 2011 (has links)
No description available.
4

Theoretical studies of molecular machines

Akimov, Alexey V. January 2012 (has links)
Molecular machines are essential components of living organisms. They are highly efficient and robust, much more than their macroscopic analogs. This stimulated growing interest in construction of artificial molecular machines with a set of functions which may be controlled in a specific way. Such man-made molecular complexes are designed as the building blocks for future nanotechnological devices. During the last decades many new molecular machines have been synthesized and characterized by various experimental techniques. This significantly increased our knowledge about systems of such kind and their functioning. However, there are only a few real applications of molecular machines. This is because the fundamental principles of operation of such single-molecule systems are not well understood. Existing theoretical studies, although very helpful, are still very sparse. This is because the molecular machines are very complex systems, comprising up to thousands atoms. Thus the progress in our understanding of nanoscale materials is tightly related to development of efficient computational and theoretical methodologies. In this work we studied two large classes of molecular machines: surface-moving nanocars and molecular rotors/motors, working on the surfaces and in crystalline state. In particular we studied the role of the internal interactions of these machines as well as their interactions with the environment. This included the flexibility of the molecules, including the rotation of the nanocars' wheels, effects of surface and rotors symmetry, charge transfer effects as well as many other factors. We have found out relations which determine the properties of studied classes of molecular machines. The development of computational and theoretical methods was another essential part of this work. In particular we have developed a family of the surface-molecule interaction potentials, aimed to performing long time scale and molecular simulations of complex systems. We also developed a physics-based model of the charge transfer happening between metals and the nanocars. This opened new ways to control such molecular machines. We also developed a theoretical framework to predict response of molecular rotors on various types of driving. Finally, we developed new and improved existing rigid-body molecular dynamics methods and extensively used them in our studies of molecular machines. / Only volume 2 has been digitized.
5

Studium mikroviskozity membránových systémů na bázi iontových amfifilních párů / Study of microviscosity of membrane systems based on ionic amphiphilic pairs

Moslerová, Lenka January 2021 (has links)
In this master ‘s thesis, catanionic vesicles formed by the pseudo-double-chain complex CTA – DS were investigated from the point of view of microviscosity. Samplesand of cationic vesicles contained 23, 43 and 53 mol. % of cholesterol and the double-chain surfactant DODAC. Cationic vesicles were prepared for visual observation, their stability was determined by DLS and the prepared system was further investigated. Microviscosity was determined from fluorescence anisotropy. To study the outer part of the membrane, laurdan fluorescent probes were used whereas diphenylhexatriene was used for the inner part of the membrane. This method has been proven to be suitable because it reflects the conditions of the membrane. Moreover, a 1,3-bispyrenylpropane probe forming intramolecular excimers was used to study the microviscosity in the vesicle bilayer. The dicyanovinyljulolidine (DCVJ) probe was applied in the case of the molecular rotor technique. It has been shown that in the case of the DCVJ probe, the molecular rotor technique is practically unusable, due to the fact that the probe has a low quantum yield at low temperatures. Also, the excimer formation of P3P probes does not lead to the expected results. The cationic vesicles do not seem to support this formation, as they are too closely related. This type of probe can be used for the selected system with some restrictions.
6

Alternative Excitation Methods in Scanning Tunneling Microscopy

Kersell, Heath R. January 2015 (has links)
No description available.

Page generated in 0.0528 seconds