• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 5
  • 5
  • 5
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A computational study of Trishomocubane amino acid dipeptide

Govender, Poomani Penny January 2004 (has links)
A dissertation submitted in partial fulfilment of the requirements for the degree of Master of Technology: Chemistry, Durban Institute of Technology, 2004. / 4-amino-(D3)-trishomocubane-4-carboxylic acid (tris-amino acid) is a constrained a-amino acid residue that exhibits peculiar conformational characteristics. The aim of the present study is to provide a deeper understanding of these features, which can be used as a guide when chOOSing@shomocubane as suitable building blocks for peptide design. The Ca carbon of@ishomocubane forms part of the cyclic structure, and consequently a peptidic environment was simulated with an acetyl group on its N-terminus and a methyl amide group on its C-terminus. This study involved a complete exploration of the conformational profile of (Yishomocubane using computational techniques.The parm94 parametization of the AMBER oio forc@eld was used to explore the conformational space of the peptide,Q)\xEFshomocubane. The Ramachandran maps computed at the molecular mechanics level' with the parm94 forc@\xEFeld parameters compared reasonably with the corresponding maps computed at the Hartree Fock (HF) level, using the 6-31G* basis set. The results of this study revealed that the conformational profile of the @ishomocubane peptide can be characterized by four low energy regions, viz., C7ax, C7eq, 310 and al helical structures. / M
2

High resolution quantification of cellular forces for rigidity sensing

Liu, Shuaimin January 2016 (has links)
This thesis describes a comprehensive study of understanding the mechanism of rigidity sensing by quantitative analysis using submicron pillar array substrates. From mechanobiology perspective, we explore and study molecular pathways involved in rigidity and force sensing at cell-matrix adhesions with regard to cancer, regeneration, and development by quantification methods. In Chapter 2 and 3, we developed fabrication and imaging techniques to enhance the performance of a submicron pillar device in terms of spatial and temporal measurement ability, and we discovered a correlation of rigidity sensing forces and corresponding proteins involved in the early rigidity sensing events. In Chapter 2, we introduced optical effect arising from submicron structure imaging, and we described a technique to identify the correct focal plane of pillar tip by fabricating a substrate with designed-offset pillars. From calibration result, we identified the correct focal plane that was previously overlooked, and verified our findings by other imaging techniques. In Chapter 3, we described several techniques to selectively functionalize elastomeric pillars top and compared these techniques in terms of purposes and fabrication complexity. Techniques introduced in this chapter included direct labeling, such as stamping of fluorescent substances (organic dye, nano-diamond, q-dot) to pillars top, as well as indirect labeling that selectively modify the surface of molds with either metal or fluorescent substances. In Chapter 4, we examined the characteristics of local contractility forces and identified the components formed a sarcomere like contractile unit (CU) that cells use to sense rigidity. CUs were found to be assembled at cell edge, contain myosin II, α-actinin, tropomodulin and tropomyosin (Tm), and resemble sarcomeres in size (~2 μm) and function. Then we performed quantitative analysis of CUs to evaluate rigidity sensing activity over ~8 hours time course and found that density of CUs decrease with time after spreading on stiff substrate. However addition of EGF dramatically increased local contraction activity such that about 30% of the total contractility was in the contraction units. This stimulatory effect was only observed on stiff substrate not on soft. Moreover, we find that in the early interactions of cells with rigid substrates that EGFR activity is needed for normal spreading and the assembly of local contraction units in media lacking serum and any soluble EGF. In Chapter 5, we performed high temporal- and spatial-resolution tracking of contractile forces exerted by cells on sub-micron elastomeric pillars. We found that actomyosin-based sarcomere-like CUs simultaneously moved opposing pillars in net steps of ~2.5 nm, independent of rigidity. What correlated with rigidity was the number of steps taken to reach a force level that activated recruitment of α-actinin to the CUs. When we removed actomyosin restriction by depleting tropomyosin 2.1, we observed larger steps and higher forces that resulted in aberrant rigidity sensing and growth of non-transformed cells on soft matrices. Thus, we conclude that tropomyosin 2.1 acts as a suppressor of growth on soft matrices by supporting proper rigidity sensing.
3

An ab initio molecular orbital study of some binary complexes of water.

Tshehla, Tankiso Michael. January 1996 (has links)
Ab initio molecular orbital theory has been successful in predicting the stabilities of many weak complexes; typical of these are the complexes formed between water and various small molecules. To account for the correlation effect, Moller-Plesset perturbation theory truncated at the second order level was employed. In order to account for the hydrogen bonding, the 6-3lG** basis set was used. The geometry optimisations of the complexes were carried out using the Gaussian-92 suite of programs installed on a Hewlett-Packard 720 computer operating under UNIX. The interaction energies of the complexes were subjected to further analysis by applying the Morokuma decomposition scheme. The electrostatic interaction component accounts for over 40% of the total stabilisation energy in all the typical hydrogen bonded complexes. Gas phase enthalpies were computed and compared with the experimental values of similar systems. For the systems studied here, the prediction is that all complexes are stable at 25° C. A second program, Vibra, was used for carrying out a normal coordinate analysis. A third computer program for the graphical representation of molecular and crystallographic models, Schakal-92, was employed to illustrate the predicted equilibrium geometries and the fundamental vibrational modes. The predicted geometries, interaction energies, charge redistributions, vibrational wave numbers, infrared intensities and force constants are listed and compared with those in the literature, where applicable. Correlations between the various predicted properties show some interesting chemistry. / Thesis (Ph.D.)-University of Natal, Durban, 1996.
4

AB initio studies of a pentacyclo-undecane cage lactam

Singh, Thishana January 2003 (has links)
Thesis (M.Tech.: Chemistry)-Dept. of Chemistry, Durban Institute of Technology, 2003 ix, 70 leaves + 1 computer laser optical disc / The purpose of this study is to utilize computational techniques in the determination of the mechanistic pathways for the one-pot conversion of a pentacyclo-undecane (PCU) dione 1.1 to a pentacyclo-undecane cage lactam 1.2.
5

AB initio studies of a pentacyclo-undecane cage lactam

Singh, Thishana January 2003 (has links)
Thesis (M.Tech.: Chemistry)-Dept. of Chemistry, Durban Institute of Technology, 2003 ix, 70 leaves + 1 computer laser optical disc / The purpose of this study is to utilize computational techniques in the determination of the mechanistic pathways for the one-pot conversion of a pentacyclo-undecane (PCU) dione 1.1 to a pentacyclo-undecane cage lactam 1.2.

Page generated in 0.1252 seconds