• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 633
  • 101
  • 78
  • 72
  • 37
  • 10
  • 9
  • 9
  • 9
  • 7
  • 4
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 1183
  • 518
  • 221
  • 191
  • 183
  • 157
  • 141
  • 136
  • 112
  • 111
  • 110
  • 103
  • 96
  • 96
  • 96
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Die Rolle der clathrin- und dynaminabhängigen Endozytose bei der Internalisation von anti-Amphiphysin-Autoantikörpern im Falle des Stiff-Person-Syndroms, untersucht am Zellkulturmodell hippocampaler Neurone / The role of clathrin- and dynamin dependent endocytosis in internalisation of anti-amphiphysin-autoantibodies in case of Stiff-Person-Syndrom

Emmerich, Christoph January 2020 (has links) (PDF)
In dieser Arbeit wurde mit Hilfe von small-molecule Inhibitoren die Rolle von clathrin- und dynaminabhängigen Endozytosemechanismen bei der Aufnahme von anti-Amphiphysin-Autoantikörpern am Zellkulturmodell primärer hippocampaler Neurone untersucht. Hierbei konnte eine Beeinflussung der Autoaantikörperaufnahme durch die Intervention gezeigt werden. Außerdem erfolgte der Versuch der Etablierung eines siRNA knockdowns unter Zuhilfenahme unterschiedlicher Traansfektionsreaaagenzien. / This thesis investigated the role of clathrin and dynamin dependent endocytosis in internalisation of anti-amphiphysin-autoantibodies in primary mouse hippocampal neurons by using small molecule inhibitors. An influence in the uptake due to small molecule treatment can be shown. Furthermore an attempt of siRNA knockdown establishment was performed using different transfection reagents.
42

Investigation of the gas-phase reactions of 2-methoxypropene with protonated pyridine- and aniline- based compounds

Tanya Peng (16636068) 08 August 2023 (has links)
<p>The purpose of this thesis research was to examine the gas-phase reactions of 2- methoxypropene (MOP) with protonated nitrogen-containing compounds, specifically pyridine, and aniline derivatives, in a linear quadrupole ion trap mass spectrometer. In addition, to maintain consistency with past experiments, several previously investigated sulfoxides were included in this study. The analytes were protonated via atmospheric pressure chemical ionization (APCI) in a linear quadrupole ion trap spectrometer, transferred into the ion trap, isolated, and then allowed to react with MOP inside the ion trap. </p> <p>All the protonated sulfoxides examined reacted with MOP to generate a stable adduct, as expected. They also transferred a proton to MOP. All protonated anilines reacted in the same manner with MOP. The diagnostic adduct formation reaction is proposed to involve proton transfer from the protonated analyte to MOP followed by addition of the neutral analyte to protonated MOP. In sharp contrast to sulfoxides and anilines, protonated pyridines were unreactive toward MOP. Therefore, the formation of a stable adduct is diagnostic for both sulfoxides and anilines but these compounds can be differentiated from pyridines due to the lack of reactivity of their protonated forms toward MOP. </p>
43

Design and Synthesis of Superresolution Imaging Agents

Williams, Jarrod C. 24 July 2012 (has links)
No description available.
44

Macromolecule Transport in Tumours: Mathematical Modelling and Experimental Studies / Macromolecule Transport in Tumours

Alexandrakis, George 09 1900 (has links)
The delivery of immunoreactive macromolecules to tumour cells in solid, heterogeneously perfused tumours is a major problem in the effectiveness of immunotherapy. To help optimize the new experimental treatment method, a published mathematical model of macromolecule transport (Baxter & Jain 1989,1990,199la) was appraised and verified experimentally. Computational and analytical tools were developed to predict the interstitial plasma fluid pressure and velocity distributions in well perfused spherical tumours. Their published analytical solutions of the formulation were found to have some errors and were corrected in this work. To check the validity of the formulation, a series of animal experiments was performed to quantify the total vascular volume, and plasma fluid extravasation rate in SKOV3ipl human ovarian tumour xenografts in nude mice. The results compared well with the theoretically predicted total plasma fluid extravasation rate. Computer codes were also developed to predict the spatial and temporal distributions of intact IgG and its F(ab')₂ and Fab/Fab' fragments in well perfused spherical tumours using the formulation proposed by Baxter & Jain (1989,1990,1991a). The cases of non-binding and binding macromolecules were treated separately. The codes for both the interstitial pressure and macromolecule distributions were written to include a radially variable vessel surface area for transcapillary exchange per unit volume of tumour tissue (SN). The sensitivity of the overall tumour perfusion to variation of (a) the macromolecule m.w., binding affinity, and metabolism, (b) SN, tumour radius, and (c) microvascular permeability were investigated. Comparison of the theoretical predictions with available experimental data leads to the realization of a number of shortcomings in the previously proposed formulations. Finally, a computational method for deriving the effective spherically symmetric spatial distributions for the vascular volume density, and SN from tumour serial sections was developed. This bridges the gap between the actual topology of vascular distributions in tumours and the format of current formulations. / Thesis / Master of Science (MS)
45

Effects of Electron-Vibron Coupling in Single-Molecule Magnet Transport Junctions Using a Hybrid Density Functional Theory and Model Hamiltonian Approach

Mccaskey, Alexander Joseph 14 May 2014 (has links)
Recent experiments have shown that junctions consisting of individual single-molecule magnets (SMMs) bridged between two electrodes can be fabricated in three-terminal devices, and that the characteristic magnetic anisotropy of the SMMs can be affected by electrons tunneling through the molecule. Vibrational modes of the SMM can couple to electronic charge and spin degrees of freedom, and this coupling also influences the magnetic and transport properties of the SMM. The effect of electron-vibron coupling on transport has been extensively studied in small molecules, but not yet for junctions of SMMs. The goals of this thesis will be two-fold: to present a novel approach for studying the effects of this electron-vibron coupling on transport through SMMs that utilizes both density functional theory calculations and model Hamiltonian construction and analysis, and to present a software framework based on this hybrid approach for the simulation of transport across user-defined SMMs. The results of these simulations will indicate a characteristic suppression of the current at low energies that is strongly dependent on the overall electron-vibron coupling strength and number of molecular vibrational modes considered. / Master of Science
46

Electron Transport via Single Molecule Magnets with Magnetic Anisotropy

Luo, Guangpu 07 February 2019 (has links)
Single molecule magnets (SMMs) are molecules of mesoscopic scale which exhibit quantum properties such as quantum tunneling of magnetization, quantum interference, spin filtering effects, strong spin-phonon coupling and strong hyperfine Stark effects. These effects allow applications of SMMs to high-density information storage, molecular spintronics, and quantum information science. Therefore, SMMs are of interest to physicists, chemists, and engineers. Recently, experimental fabrication of individual SMMs within transistor set-ups have been achieved, offering a new method to examine magnetic properties of individual SMMs. In this thesis, two types of SMMs, specifically Eu2(C8H8)3 and Ni9Te6(PEt3)8, are theoretically investigated by simulating their electron transport properties within three-terminal transistor set-ups. An extended metal atom chain (EMAC) consists of a string of metallic atoms with organic ligands surrounding the string. EMACs are an important research field for nanoelectronics. Homometallic iron-based EMACs are especially attractive due to the high spin and large magnetic anisotropy of iron(II). We explore the exchange coupling of iron atoms in two EMACs: [Fe2(mes)2(dpa)2] and [Fe4(tpda)3Cl2]. Chapter 1 provides an introduction to SMMs, electron transport experiments via SMMs and an introduction to density functional theory (DFT). Chapter 2 presents a theoretical study of electron transport via Eu2(C8H8)3. This type of molecule is interesting since its magnetic anisotropy type changes with oxidation state. The unique magnetic properties lead to spin blockade effects at zero and low bias. In other words, the current through this molecule is completely suppressed until the bias voltage exceeds a certain value. Chapter 3 discusses a theoretical study of electron transport via Ni9Te6(PEt3)8. The magnetic anisotropy of this magnetic cluster has cubic symmetry, which is higher than most SMMs. With appropriate magnetic anisotropy parameters, in the presence of an external magnetic field, uncommon phenomena such as low-bias blockade effects, negative conductance and discontinuous conductance lines, are observed. In Chapter 2 and 3 DFT-calculated magnetic anisotropy parameters are used and electron transport properties are calculated by solving master equations at low temperature. Chapter 4 examines the exchange coupling between iron ions in EMACs [Fe2(mes)2(dpa)2] and [Fe4(tpda)3Cl2]. The exchange coupling constants are calculated by using the least-squares fitting method, based on the DFT-calculated energies from different spin configurations. / Ph. D. / Single molecule magnets (SMMs) are molecules of mesoscopic scale which exhibit quantum properties. Its quantum effects are used to describe the behavior of SMMs at the smallest scales. These quantum properties could also be used to reveal possible applications of SMMs to high-density information storage, molecular spintronics, and quantum information science. Thus SMMs are of interest to physicists, chemists, and engineers. Recently, electron transport via individual SMMs was achieved in experiments. Electron transport is obviously affected by the magnetic properties of the SMM, thus one can examine magnetic properties of an SMM indirectly by measuring electron transport via the SMM. In this thesis, two types of SMMs, Eu2(C8H8)3 and Ni9Te6(PEt3)8, are investigated theoretically by simulating their electron transport properties. An extended metal atom chain (EMAC) consists of a string of metallic atoms with organic ligands surrounding the string. EMACs are an important research field for nanoelectronics. Homometallic iron-based EMACs are especially attractive due to the high spin and large magnetic anisotropy of iron(II). If a molecule has magnetic anisotropy, its magnetic properties change with the direction of its magnetic moment. We explore how iron atoms interact with each other in the EMACs [Fe2(mes)2(dpa)2] and [Fe4(tpda)3Cl2]. Chapter 1 provides an introduction to SMMs, electron transport experiments via SMMs and an approximation method, density functional theory (DFT). DFT is a method to approximate electronic structure and magnetic properties of various many-body systems. Chapter 2 investigates theoretical electron transport via Eu2(C8H8)3. Eu2(C8H8)3 changes its type of magnetic anisotropy when it obtains an extra electron, which is different from most SMMs. If the Eu2(C8H8)3 is short of an extra electron, its magnetization direction is in-plane, that is, its magnetic energy is lowest when its magnetic moment is along any direction in a specific plane. If an extra electron is captured by Eu2(C8H8)3, its magnetization direction becomes out-of-plane, and its lowest energy is obtained when its magnetic moment is along the direction normal to the specific plane. The unique magnetic properties lead to blockade effects at low bias: the current through this molecule is completely suppressed until the bias voltage exceeds a certain value. The bias voltage on a molecule equals the electrical potential difference between two ends of the molecule. Chapter 3 investigates theoretical electron transport via Ni9Te6(PEt3)8. Magnetic anisotropy of Ni9Te6(PEt3)8 is cubic symmetric, and its symmetry is higher than most SMMs. With appropriate magnetic anisotropy parameters, in the presence of an external magnetic field, uncommon phenomena are observed. These phenomena include (1) current is completely suppressed when bias is low; (2) current via SMM decreases while bias on SMM increases; (3) there are discontinuous lines in the figures that describe electrical conductance of current. Chapter 4 examines the iron atoms’ interaction strength in both [Fe2(mes)2(dpa)2] and [Fe4(tpda)3Cl2]. Reasonable spin Hamiltonians are used to describe the energy of EMACs. Considering all possible directions of the spins of iron atoms in two EMACs, we calculate the energy of every possible spin configuration using DFT. The energy of each spin configuration can be expressed as an equation containing one or more coupling constants. We apply the least-squares fitting method to obtain the values of the coupling constants in the spin Hamiltonians.
47

The Structure of Lycopodine

Harrison, William Ashley 09 1900 (has links)
A study has been made of the chemistry of lycopodine, the major alkaloid of several species of Lycopodium. From the information obtained, most of the peripheral structure of the lycopodine molecule can be deduced. A complete structure is proposed for the alkaloid. / Thesis / Doctor of Philosophy (PhD)
48

Aberration analysis and high-density localization for live-cell super-resolution imaging

Li Fang (18862045) 24 June 2024 (has links)
<p dir="ltr">Single molecule localization microscopy (SMLM) has become an essential tool in imaging nanoscale biological structures. It breaks the diffraction limit by utilizing photo-switchable or photo-convertible fluorophores to obtain isolated single molecule emission patterns (i.e. PSFs) and subsequently localize the molecule’s position with a precision down to ~ 20 to 80 nm laterally-axially. However, optical aberrations compromise its spatial resolution. Additionally, conventional SMLM algorithms require sparse activation to reduce emission pattern overlap, which restricts imaging speed and temporal resolution, thus limiting its utility in dynamic live cell imaging. In this study, we first conducted a comprehensive quantitative analysis of the theoretical precision limits for position and wavefront distortion measurements in the presence of aberrations, which enhances our understanding of aberration effects in SMLM and lays the groundwork for developing more effective aberration correction methods. To improve temporal resolution, we developed a high-density single molecule localization algorithm that utilizes deep learning to analyze molecule blinking data. This approach allows us to achieve high localization precision and resolve structures at tens of nanometers resolution, even with highly overlapped blinking data. Validated by both simulated and high-density experimental data, our algorithm successfully resolves the complex structures of various cellular organelles and captures rapid dynamic movements in live cells. This work addresses the knowledge gap about aberrations in SMLM and expands its applications to more dynamic and detailed studies of cellular processes.</p>
49

Studies of Single-Molecule Spectroscopy by a Pulsed Tunable Dye Laser Source

Wu, Ching-Jung 09 August 2001 (has links)
none
50

Studies of molecular motions by fluorescence microscopy at single molecule and single fiber levels

Lange, Jeffrey J. January 1900 (has links)
Doctor of Philosophy / Department of Chemistry / Daniel A. Higgins / In this dissertation, state-of-the-art fluorescence microscopy techniques are employed to probe unique nanoscale phenomena in poly(dimethylsiloxane) (PDMS) films and on single carbon nanofibers. In one study, the mobility and physical entrapment of single dye molecules in dry and solvent-loaded PDMS films is explored. Experiments are performed under dry nitrogen and at various levels of isopropyl alcohol (IPA) loading from the vapor phase, as monitored by a PDMS-coated quartz-crystal microbalance. Single molecules are shown to be predominantly immobile under dry conditions and mostly mobile under IPA-saturated conditions. FCS is used to measure the apparent diffusion coefficient, yielding a mean that is virtually independent of IPA loading and sample class. An increase in the population of mobile molecules under high IPA conditions is attributed to the filling of film micropores with solvent, rather than by incorporation of molecularly dispersed solvent into the PDMS. In a second study, the molecular mobility of both neutral and cationic molecules in cured PDMS films is studied as a function of oligomer extraction. Cross correlation and Bayesian burst analysis methods were used to quantify the populations of fixed and total molecules, respectively. The results show that the total concentration of dye increases with increased oligomer extraction, while the relative populations of fixed and mobile molecules decrease and increase, respectively. These results are relevant to the use of PDMS in microfluidics, nanofiltration and pervaporation membranes and solid phase microextraction fibers. In a final study, molecular beacons (MBs) were immobilized onto the ends of single, sol-gel encapsulated vertically-alligned carbon nanofibers (VACNFs) attached to a silicon electrode. MB fluorescence was monitored as a function of the potential applied to the VACNF in a three-electrode electrochemical cell. Application of positive potentials attracts the negatively charged backbone of the MB, causing hybridization of the stem and a reduction in beacon fluorescence. Negative potentials cause dehybridization of the stem, and an increase in MB fluorescence. This study presents the first measurement of potential-dependent dehybridization/rehybridization of MBs attached directly to the end of a single VACNF. These studies will help to characterize the mechanism by which future lab-on-a-chip devices will detect harmful bio-organisms.

Page generated in 0.0226 seconds