1 |
Ecophysiology and population dynamics of the alien invasive gastropod Tarebia granifera in the iSimangaliso Wetland Park, South Africa.Miranda, Nelson Augusto Feranandes. January 2012 (has links)
Tarebia granifera is a prosobranch freshwater gastropod from south-east Asia which has
invaded other sub-tropical parts of the world. This snail has recently also invaded the
iSimangaliso Wetland Park, often reaching population densities of over 20000 ind.mˉ2 and
dominating benthic invertebrate communities. A multiple method approach was used to address
several aspects of the biology and ecology of this non-native invasive species (NIS). The
tolerance of T. granifera to salinity and temperature was investigated through the experimental
manipulation of these factors. T. granifera survived exposure to temperatures between 0 ºC and
47.5 ºC. More remarkably, this snail was able to survive a salinity of 30 for 65 - 75 days.
Population density and size structure were monitored in estuaries and coastal lakes. T. granifera
successfully invaded estuaries despite frequent exposure to high salinity and desiccation. The
persistence of T. granifera was largely ensured due to the wider environmental tolerance of
adults (20 - 30 mm shell height) which carried an average of 158 ± 12.8 SD brooded juveniles.
Multiple introductions were not essential for the success of this parthenogenetic NIS. Using gut
fluorescence and carbon budget techniques it was estimated that T. granifera consumes 0.5 -
35% of the total available microphytobenthic biomass per day, or 1.2 - 68% of the daily primary
benthic production. The carbon component estimated from the gut fluorescence technique
contributed 8.7 - 40.9% of the total gut organic carbon content. A stable isotope mixing model
was used together with gut content analysis to estimate the diet of T. granifera and dominant
native gastropod species, potentially competing for resources. Results were used in the
formulation of an index of isotopic dietary overlap (IDO, %). This approach yielded detailed
information both on general changes in ecosystem functioning and specific species interactions.
Before/After-Control/Impact (BACI) logic was used in a multivariate approach to separate
human perturbations from natural spatio-temporal variability displayed by communities, and to
further separate perturbations due to NIS. Human intensification of drought negatively affected
biodiversity and T. granifera may exacerbate this problem by displacing native species from
critical refugia and contributing towards biotic homogenization. The present findings constitute
a contribution to the scientific knowledge on biological invasions and a useful tool towards
adaptive management in the iSimangaliso Park. / Thesis (Ph.D.)-University of KwaZulu-Natal, Westville, 2012.
|
2 |
Diversity of bivalve molluscs within the St Lucia estuarine system, with emphasis on the ecophysiology of Solen cylindraceus and Brachidontes virgiliae.Nel, Holly Astrid. 17 June 2014 (has links)
The St Lucia estuarine system, Africa’s largest estuarine lake, is characterised by cyclic changes from
hypersaline to oligo/mesohaline conditions in response to alternations between drought and wetter
than average years. In addition, St Lucia also experiences stochastic disturbances, such as flooding
events that rapidly decrease salinity levels. Due to their sessile and slow moving nature, bivalves are
particularly vulnerable to rapid or prolonged changes in the physico-chemical environment. The
recent freshwater deprivation crisis that prevailed for the last decade resulted in a significant loss in
bivalve species richness within the system. An annotated and illustrated bivalve census revealed the
occurrence of twenty-four species within St Lucia between the years 1925 and 2011. However, only
six species were recorded during the most recent survey in March 2011. The infaunal razor clam,
Solen cylindraceus, and the epifaunal brackwater mussel, Brachidontes virgiliae, are currently the
dominant bivalve species within St Lucia. This study, therefore, aimed to record the species richness
of bivalves found in Lake St Lucia and to investigate key biological aspects of the two dominant
bivalve taxa within the system, under different salinity regimes. Experiments revealed that S.
cylindraceus can tolerate salinities between 15 and 65, while B. virgiliae prefers salinity levels
ranging from freshwater to 20. The varying tolerance limits, therefore, dictate the distribution of these
species during different climatic conditions within the estuarine lake. During wet periods, S.
cylindraceus is restricted to the northern reaches, unable to tolerate the oligohaline conditions present
in the rest of the system. Conversely, B. virgiliae, often restricted to the Narrows, becomes ubiquitous
throughout the system under such conditions. Solen cylindraceus can reach a maximum length of 95
mm. However, in the St Lucia estuarine system, specimens seldom exceed a length of 55 mm,
probably because prevailing/re-occurring harsh conditions prevent them from reaching maximum
size. In situ measurements of this species also revealed less growth during the first year of life than for
the same species in different systems. While B. virgiliae is substantially smaller than S. cylindraceus,
the high densities that this species is able to attain makes it an important grazer with the potential to
have significant feeding impacts on the local phytoplankton biomass. Results showed that in localised
areas, B. virgiliae populations may consume up to eight times the available phytoplankton biomass.
These key bivalve species are strongly influenced by the fluctuation in climatic conditions from wet to
dry phases. Thus, understanding the effects that climatic shifts have on key estuarine species is
essential, as flood and drought events are predicted to increase in frequency, intensity and duration as
a result of global climate change. / Thesis (Ph.D.)-University of KwaZulu-Natal, Durban, 2014.
|
Page generated in 0.0277 seconds