• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 16
  • 1
  • Tagged with
  • 17
  • 17
  • 17
  • 17
  • 7
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Thermodynamic analysis of molten carbonate fuel cell systems

Rashidi, Ramin 01 December 2008 (has links)
This study deals with the thermodynamic analysis of a molten carbonate fuel cell (MCFC) hybrid system to determine its efficiencies, irreversibilities and performance.The analysis includes a performance investigation of a typical molten carbonate fuel cell stack, an industrial MCFC hybrid system, and an MCFC hybrid system deployed by Enbridge. A parametric study is performed to examine the effects of varying operating conditions on the performance of the system. Furthermore, thermodynamic irreversibilities in each component are determined and an optimization of the fuel cell is conducted. Finally, a simplified and novel method is used for the cost analysis of the Enbridge MCFC hybrid system.An exergy analysis of the hybrid MCFC systems demonstrates that overall efficiencies of up to 60 % are achievable. The maximum exergy destruction was found in components in which chemical reactions occur. In addition, the turboexpander is one of the major contributors to the overall exergy destruction of the system. The cost analysis of the Enbridge system illustrates that by merging the importance of “green” energy and rising costs of carbon offsets, this new technology could be a promising solution and substitute for future energy supply. / UOIT
2

Applications for Molten Carbonate Fuel Cells

Rexed, Ivan January 2014 (has links)
Molten Carbonate Fuel cells are high temperature fuel cells suitable for distributed generation and combined heat and power, and are today being installed on commercial basis in sizes from 100kW to several MW. Novel applications for MCFC which have attracted interest lately are MCFC used for CO2 separation from combustion flue gas, and high temperature electrolysis with reversible fuel cells. In the first application, the intrinsic capability of the MCFC to concentrate CO2 from the cathode to the anode side through the cell reaction is utilized. In the second application, the high operating temperature and relatively simple design of the MCFC is utilized in electrolysis, with the aim to produce a syngas mix which can be further processed into hydrogen of synthetic fuels. In this thesis, the effect on fuel cell performance of operating a small lab-scale molten carbonate fuel cell in conditions which simulate those that would apply if the fuel cell was used for CO2 separation in combustion flue gas was studied. Such operating conditions are characterized especially by a low CO2 concentration at the cathode compared to normal operating conditions. Sulfur contaminants in fuel gas, especially H2S, are known poisoning agents which cause premature degradation of the MCFC. Furthermore, combustion flue gas often contains sulfur dioxide which, if entering the cathode, causes performance degradation by corrosion and by poisoning of the fuel cell. This makes poisoning by sulfur contaminants of great concern for MCFC development. In this thesis, the effect of sulfur contaminants at both anode and cathode on fuel cell degradation was evaluated in both normal and in low CO2 simulated flue gas conditions.      The results suggested that the poisoning effect of SO2 at the cathode is similar to that of H2S at the anode, and that it is possibly due to a transfer of sulfur from cathode to anode. Furthermore, in combination with low CO2 conditions at the cathode, SO2 contaminants cause fuel cell poisoning and electrolyte degradation, causing high internal resistance. By using a small lab-scale MCFC with commercial materials and standard fuel cell operating conditions, the reversible MCFC was demonstrated to be feasible. The electrochemical performance was investigated in both fuel cell (MCFC) and electrolysis cell (MCEC) modes. The separate electrodes were studied in fuel cell and electrolysis modes under different operating conditions. It was shown that the fuel cell exhibited lower polarization in MCEC mode than in MCFC mode, and a high CO2 concentration at the fuel cell anode reduced the polarization in electrolysis mode, which suggested that CO2 is reduced to produce CO or carbonate. / Smältkarbonatbränsleceller (MCFC) är en typ av högtemperaturbränsleceller som är anpassade för kombinerad el- och värmeproduktion i mellan-till stor skala. Idag installeras MCFC på kommersiell basis i storlekar mellan 100kW och flera MW. En ny typ av tillämpning för MCFC som har väckt intresse på senare tid är användandet av MCFC för CO2-avskiljning i kombination med konventionell elproduktion genom förbränning. En annan ny tillämpning är högtemperaturelektrolys genom användandet av reversibla bränsleceller. I det första fallet utnyttjas att CO2 kan koncentreras från katod- till anodsidan, vilket sker genom cellreaktionen för MCFC. I det andra fallet utnyttjas den höga arbetstemperaturen och den relativt enkla cell-designen för att använda reversibla MCFC till elektrolys, med syfte att producera en syngas-blandning som kan förädlas till vätgas eller till syntetiskt bränsle. I denna avhandling studeras effekten på bränslecellens prestanda genom att operera en MCFC i lab-skala med driftförhållanden som simulerar de som förväntas uppkomma om bränslecellen användes för CO2-avskiljning ur rökgaser från förbränning. Dessa driftförhållanden karaktäriseras av låg CO2-koncentration på katodsidan jämfört med normal drift. Svavelföroreningar i bränsle, speciellt H2S, är kända för att orsaka förgiftning av anoden, vilket i sin tur försämrar bränslecellens prestanda. Dessutom innehåller rökgaser ofta SO2, vilket antas orsaka korrosion och förgiftning av katoden. Detta gör effekten av svavelföroreningar till ett prioriterat ämne för utvecklingen av MCFC. I denna avhandling undersöks effekten av svavelföroreningar på både anod- och katodsidan, i normala driftförhållanden och i förhållanden med låg CO2 som simulerar användandet av rökgaser för CO2-avskiljning. Resultaten tyder på att effekten av förgiftning med SO2 på katoden liknar den med H2S på anoden, och att detta kan vara orsakat av en transport av svavel från katod till anod. Vidare, i kombination med låg CO2 koncentration på katoden så orsakar SO2-föroreningar elektrolytdegradering, vilket orsakar hög inre resistans. Genom att använda en liten MCFC i lab-skala med kommersiella material och standardförhållanden för MCFC påvisades att reversibla smältkarbonatbränsleceller kan vara ett lovande koncept. Den elektrokemiska prestandan av både cell och separata elektroder undersöktes både som bränslecell (MCFC)och vid elektrolys (MCEC). Resultaten visade att cellen uppvisade lägre polarisation vid elektrolys än som bränslecell, och att ten hög CO2-koncentration på det som är bränslecellens anodsida gav upphov till en minskad elektrodpolarisation, vilket indikerar att CO2 reduceras för att producera CO eller karbonat. / <p>QC 20141028</p>
3

Corrosion of current cullector materials in the molten carbonate fuel cell

Zhu, Baohua January 2000 (has links)
The corrosion of current collector materials in MoltenCarbonate Fuel Cells (MCFC) is investigated. The essential aimsof this investigation were to study the corrosion behaviour ofdifferent materials, in varying cathode and anode MCFCenvironments, and to study the contact corrosion resistancesbetween the MCFC current collector and electrodes. For thesepurposes, pure iron, iron-chromium binary alloys and severalcommercial steels were investigated in molten carbonate meltswithin the pot-cell laboratory set-up. In addition, the contactcorrosion resistances, between an AISI 310 current collectorand two cathodes (NiO and LiCoO2), were studied in a laboratory fuel cell.Post-tests were done to study the corrosion products formed atthe surfaces. In cathode environments, corrosion potential increased overtime as a protective corrosion layer slowly formed. Eventually,the potential reached a stable value close to the cathodeoperating potential. The main cathode reaction, as corrosionpotential increased, changed from water reduction to oxygenreduction. Corrosion rate under the operating cathode conditiondepended on the chromium content; the higher the concentrationof chromium, the lower the corrosion rate. The corrosion ratesof ferritic steels, with high chromium content, and AISI 310were higher at the so-called outlet operating condition incomparison to the standard and so-called inlet conditions. Thecorrosion rate was higher at the beginning of the exposure,which resulted in a relatively fast corrosion layer growth thatslowed as the protective layer was formed. It was shown thatthe corrosion layers, formed on iron-chromium alloys, AISI 310and ferritic high chromium-containing steels, consisted of twolayers. The outer layer was porous and iron rich, while theinner layer was quite compact and rich in chromium and/oraluminiumTherefore, the corrosion behaviour was dependent onthe corrosion layer structure at the metal surface. In anode environments, the beneficial behaviour of aluminiumin ferritic alloys, with high aluminium contents, was due tothe formation of aluminium oxide and/or lithium aluminium oxideat the surface. The corrosion rates at the standard and outletconditions were of the same order of magnitude, while thecorrosion rates at the inlet conditions were considerablyhigher. The lower temperatures and higher carbon dioxideconcentrations in the inlet conditions appeared to result in asurface layer deficient in aluminium. A modified theoreticalmodel was developed to evaluate the corrosion current densitiesfrom experimental polarisation curves or linear polarisationresistance measurements in anode environments. The fittingswere found to be very good. An experimental method was developed forin-situmeasurements of the contributions to the totalohmic losses at the cathode in a laboratory scale MCFC. Thecontact resistance between the cathode and current collectorcontributed quite a large value to the total cathodepolarization. The corrosion layer, formed between the LiCoO2cathode and AISI 310 current collector, wasiron-rich and more porous, and contained a small amount ofcobalt. This was deemed to consist of a two-phase oxide, whichresulted in a lower conductivity. The corrosion layer, formedbetween the NiO cathode and AISI 310 current collector, wasrich in nickel. The corrosion layers on the AISI 310, incontact with the cathode, had a different composition comparedto samples immersed in carbonate melts. <b>Key words</b>: molten carbonate fuel cell (MCFC), corrosion,current collector, contact corrosion resistance.
4

Modelling and experimental investigation of the porous nickel anode in the molten carbonate fuel cell

Sparr, Mari January 2005 (has links)
The thesis is focussed on the performance of the fuel cell and the design of the cell for operation with natural gas and renewable fuels, e.g. biogas or gasified biomass. The performance is one of the important issues for the development and commercialisation of fuel cell stacks. In order to operate fuel cell on renewable fuels, without preceding reforming of the fuel, a high temperature fuel cell is needed, i.e. a solid oxide fuel cell (SOFC) or a molten carbonate fuel cell (MCFC). At present, the latter fuel cell type is much more mature when regarding the technical aspects than is the solid oxide fuel cell. The German company MTU has up to date installed about thirty MCFC plants, mainly in Europe and the USA but also in Japan. Moreover the European Commission has decided that the use of renewable fuels must increase at the expense of fossil fuels. This decision is one step towards a smaller dependence on fossil energy sources and limited emissions of greenhouse gases. The objective of this work is to better understand the factors that influence the cell performance: to determine the kinetic parameters of the hydrogen oxidation and the carbon monoxide oxidation and to get more information about the reaction mechanism, even when dealing with gases of low hydrogen content. The latter is of special importance when operating the cells on biogas or gasified biomass. These fuels also contain higher concentrations of carbon monoxide and carbon dioxide. It was found that the hydrogen mechanism proposed by Jewulski and Suski describes the anode performance even at lower concentrations of hydrogen, i.e. gases corresponding to gasified biomass. Furthermore, the carbon monoxide reaction will only slightly influence the anode performance but if the rate of the shift reaction is small the influence of direct oxidation of carbon monoxide will increase. Experimental investigations have shown that mass transfer limitations in the gas phase exist. By mathematical modelling it was found that the current collector has a larger affect on the concentration gradients than the porous electrode. The concentrations gradients in the current collector are caused by the shift reaction that mainly takes place at the electrode. However, if the gas corresponds to equilibrium at the current collector the profiles will become almost uniform. Furthermore the influence of wetting properties, the pore structure and pore size distribution have also been investigated in this thesis. The outcome of this thesis may be used for electrode development and design, as well as for input to reliable cell and stack models for system simulations. / QC 20101008
5

Mass transport in the cathode electrode of a molten carbonate fuel cell

Findlay, Justin Earl 01 April 2009 (has links)
A molten carbonate fuel cell (MCFC) is an electro-chemical energy conversion technology that runs on natural gas and employs a molten salt electrolyte. In order to keep the electrolyte in this state, the cell must be kept at a temperature above 500 C, eliminating the need for precious metals as the catalyst. There has been only a limited amount of research on modelling the transport processes inside this device, mainly due to its limited ability for mobile applications. In this thesis, three one-dimensional models of a MCFC are presented based on different types of diffusion and convection. Comparisons between models are performed so as to assess their validity. Regarding ion transport, it is shown that there exists a limiting case for ion migration across the cathode that depends on the conductivity for the liquid potential. Finally, an optimization of the diffusivity across the cathode is carried out in an attempt to increase the cell performance and its longevity. / UOIT
6

Multi-dimensional modeling of transient transport phenomena in molten carbonate fuel cells

Yousef Ramandi, Masoud 01 June 2012 (has links)
Molten carbonate fuel cells (MCFCs) have become an attractive emerging technology for stationary co-generation of heat and power. From a technical perspective, dynamic operation has a significant effect on the fuel cell life cycle and, hence, economic viability of the device. The scope of this thesis is to present an improved understanding of the system behaviour at transient operation that can be used to design a more robust control system in order to overcome the cost and the operating lifetime issues. Hence, a comprehensive multi-component multidimensional transient mathematical model is developed based on the conservation laws of mass, momentum, species, energy and electric charges coupled through the reaction kinetics. In essence, this model is a set of partial differential equations that are discretized and solved using the finite-volume based commercial software, ANSYS FLUENT 12.0.1. The model is validated with two sets of experimental results, available in open literature, and good agreements are obtained. The validated model is further engaged in an extensive study. First, the MCFC behaviour at high current densities or oxidant utilization, when the mass transfer becomes dominant, is investigated using peroxide and superoxide reaction mechanisms. In brief, both mechanisms predicted the linear region of the polarization curve accurately. However, none of these mechanisms showed a downward bent in the polarization curve. A positive exponent for the carbon-dioxide mole fraction is probably essential in obtaining the downward bent (“knee”) at high current densities which is in contrast to what has been reported in the literature to date. Next, a sinusoidal impedance approach is used to examine the dynamic response of the unit cell to inlet perturbations at various impedance frequencies. This analysis is further used to determine the phase shifts and time scales of the major dynamic processes within the fuel cell. Furthermore, numerical simulation is utilized in order to investigate the underlying electrochemical and transport phenomena without performing costly experiments. Results showed that the electrochemical reactions and the charge transport process occur under a millisecond. The mass transport process showed a comparatively larger time scale. The energy transport process is the slowest process in the cell and takes about an hour to reach its steady state condition. Furthermore, the developed mathematical model is utilized as a predictive tool to provide a three-dimensional demonstration of the transient physical and chemical processes at system startiv up. The local distribution of field variables and quantities are presented. The results show that increasing the electrode thickness provides a higher reaction rate, but may lead to larger ohmic loss which is not desirable. The reversible heat generation and consumption mechanisms of the cathode and anode are dominant in the first 10 s while the heat conduction from the solid materials to the gas phase is not considerable. The activation and ohmic heating have the same impact within the anode and cathode because of their similar electric conductivity and voltage loss. Increasing the thermal conductivity of the cathode material will facilitate the process of heat transport throughout the cell. This can also be accomplished by lowering the effects of heat conduction by means of a cathode material with a smaller thickness. In addition, a thermodynamic model is utilized to examine energy efficiency, exergy efficiency and entropy generation of a MCFC. By changing the operating temperature from 883 K to 963 K, the energy efficiency of the unit cell varies from 42.8 % to 50.5 % while the exergy efficiency remains in the range of 26.8% to 36.3%. Both efficiencies initially rise at lower current densities up to the point that they attain their maximum values and ultimately decrease with the increase of current density. With the increase of pressure, both energy and exergy efficiencies of the cell increase. An increase in this anode/cathode flow ratio lessens the energy and exergy efficiencies of the unit cell. Higher operating pressure and temperature decrease the unit cell entropy generation. / UOIT
7

Corrosion of current cullector materials in the molten carbonate fuel cell

Zhu, Baohua January 2000 (has links)
<p>The corrosion of current collector materials in MoltenCarbonate Fuel Cells (MCFC) is investigated. The essential aimsof this investigation were to study the corrosion behaviour ofdifferent materials, in varying cathode and anode MCFCenvironments, and to study the contact corrosion resistancesbetween the MCFC current collector and electrodes. For thesepurposes, pure iron, iron-chromium binary alloys and severalcommercial steels were investigated in molten carbonate meltswithin the pot-cell laboratory set-up. In addition, the contactcorrosion resistances, between an AISI 310 current collectorand two cathodes (NiO and LiCoO<sub>2</sub>), were studied in a laboratory fuel cell.Post-tests were done to study the corrosion products formed atthe surfaces.</p><p>In cathode environments, corrosion potential increased overtime as a protective corrosion layer slowly formed. Eventually,the potential reached a stable value close to the cathodeoperating potential. The main cathode reaction, as corrosionpotential increased, changed from water reduction to oxygenreduction. Corrosion rate under the operating cathode conditiondepended on the chromium content; the higher the concentrationof chromium, the lower the corrosion rate. The corrosion ratesof ferritic steels, with high chromium content, and AISI 310were higher at the so-called outlet operating condition incomparison to the standard and so-called inlet conditions. Thecorrosion rate was higher at the beginning of the exposure,which resulted in a relatively fast corrosion layer growth thatslowed as the protective layer was formed. It was shown thatthe corrosion layers, formed on iron-chromium alloys, AISI 310and ferritic high chromium-containing steels, consisted of twolayers. The outer layer was porous and iron rich, while theinner layer was quite compact and rich in chromium and/oraluminiumTherefore, the corrosion behaviour was dependent onthe corrosion layer structure at the metal surface.</p><p>In anode environments, the beneficial behaviour of aluminiumin ferritic alloys, with high aluminium contents, was due tothe formation of aluminium oxide and/or lithium aluminium oxideat the surface. The corrosion rates at the standard and outletconditions were of the same order of magnitude, while thecorrosion rates at the inlet conditions were considerablyhigher. The lower temperatures and higher carbon dioxideconcentrations in the inlet conditions appeared to result in asurface layer deficient in aluminium. A modified theoreticalmodel was developed to evaluate the corrosion current densitiesfrom experimental polarisation curves or linear polarisationresistance measurements in anode environments. The fittingswere found to be very good.</p><p>An experimental method was developed for<i>in-situ</i>measurements of the contributions to the totalohmic losses at the cathode in a laboratory scale MCFC. Thecontact resistance between the cathode and current collectorcontributed quite a large value to the total cathodepolarization. The corrosion layer, formed between the LiCoO<sub>2</sub>cathode and AISI 310 current collector, wasiron-rich and more porous, and contained a small amount ofcobalt. This was deemed to consist of a two-phase oxide, whichresulted in a lower conductivity. The corrosion layer, formedbetween the NiO cathode and AISI 310 current collector, wasrich in nickel. The corrosion layers on the AISI 310, incontact with the cathode, had a different composition comparedto samples immersed in carbonate melts.</p><p><b>Key words</b>: molten carbonate fuel cell (MCFC), corrosion,current collector, contact corrosion resistance.</p>
8

Characterisation of materials for use in the molten carbonate fuel cell

Randström, Sara January 2006 (has links)
<p>Fuel cells are promising candidates for converting chemical energy into electrical energy. The Molten Carbonate Fuel Cell (MCFC) is a high temperature fuel cell that produces electrical energy from a variety of fuels containing hydrogen, hydrocarbons and carbon monoxide. Since the waste heat has a high temperature it can also be used leading to a high overall efficiency.</p><p>Material degradation and the cost of the components are the problems for the commercialisation of MCFC. Although there are companies around the world starting to commercialise MCFC some further cost reduction is needed before MCFC can be fully introduced at the market.</p><p>In this work, alternative materials for three different components of MCFC have been investigated. The alternative materials should have a lower cost compared to the state-of-the-art materials but also meet the life-time goal of MCFC, which is around 5 years. The nickel dissolution of the cathode is a problem and a cathode with lower solubility is needed. The dissolution of nickel for three alternative cathode materials was investigated, where one of the materials had a lower solubility than the state-of-the-art nickel oxide. This material was also tested in a cell and the electrochemical performance was found to be comparable with nickel oxide and is an interesting candidate.</p><p>An inexpensive anode current collector material is also desired. For the anode current collector, the contact resistance should be low and it should have good corrosion properties. The two alternative materials tested had low contact resistance, but some chromium enrichment was seen at the grain boundaries. This can lead to a decreased mechanical stability of the material. In the wet-seal area, the stainless steel used as bipolar/separator plate should be coated. An alternative process to coat the stainless steel, that is less expensive, was evaluated. This process can be a suitable process, but today, when the coating process is done manually there seems to be a problem with the adherence.</p><p>This work has been a part of the IRMATECH project, which was financed by the European Commission, where the partners have been universities, research institutes and companies around Europe.</p>
9

Characterisation of materials for use in the molten carbonate fuel cell

Randström, Sara January 2006 (has links)
Fuel cells are promising candidates for converting chemical energy into electrical energy. The Molten Carbonate Fuel Cell (MCFC) is a high temperature fuel cell that produces electrical energy from a variety of fuels containing hydrogen, hydrocarbons and carbon monoxide. Since the waste heat has a high temperature it can also be used leading to a high overall efficiency. Material degradation and the cost of the components are the problems for the commercialisation of MCFC. Although there are companies around the world starting to commercialise MCFC some further cost reduction is needed before MCFC can be fully introduced at the market. In this work, alternative materials for three different components of MCFC have been investigated. The alternative materials should have a lower cost compared to the state-of-the-art materials but also meet the life-time goal of MCFC, which is around 5 years. The nickel dissolution of the cathode is a problem and a cathode with lower solubility is needed. The dissolution of nickel for three alternative cathode materials was investigated, where one of the materials had a lower solubility than the state-of-the-art nickel oxide. This material was also tested in a cell and the electrochemical performance was found to be comparable with nickel oxide and is an interesting candidate. An inexpensive anode current collector material is also desired. For the anode current collector, the contact resistance should be low and it should have good corrosion properties. The two alternative materials tested had low contact resistance, but some chromium enrichment was seen at the grain boundaries. This can lead to a decreased mechanical stability of the material. In the wet-seal area, the stainless steel used as bipolar/separator plate should be coated. An alternative process to coat the stainless steel, that is less expensive, was evaluated. This process can be a suitable process, but today, when the coating process is done manually there seems to be a problem with the adherence. This work has been a part of the IRMATECH project, which was financed by the European Commission, where the partners have been universities, research institutes and companies around Europe. / QC 20101123
10

Synthesis and characterization of binary Palladium based electrocatalysts towards alcohol oxidation for fuel cell application

Klaas, Lutho Attwell January 2018 (has links)
Magister Scientiae - MSc (Chemistry) / The anode catalyst is one of the important parts of the direct alcohol fuel cell (DAFC); it is responsible for the alcohol oxidation reaction (AOR) takes place at the anode side. Pd has been reported to have good alcohol oxidation reactions and good stability in alkaline solution. Better stability and activity has been reported for Pd alloyed catalysts when compared to Pd. Choosing a suitable alcohol also has an effect on the activity and stability of the catalyst. This study investigates the best catalyst with better AOR and the best stability and also looks at the better alcohol to use between glycerol and ethanol for the five in-house catalysts (20% Pd, PdNi, PdNiO, PdMn3O4 and PdMn3O4NiO on multi walled carbon nanotubes) using cyclic voltammetry (CV), linear sweep voltammetry (LSV), electrochemical impedance spectrometry (EIS) and chronoamperometry. HR-TEM and XRD techniques were used to determine the particle size and average particle size, respectively while EDS used to determine elemental composition and ICP was used to determine catalyst loading. It was observed from LSV that PdNiO was the most active catalyst for both ethanol and glycerol oxidation, and it was the most stable in ethanol while PdMn3O4 proved to be the most stable catalyst in glycerol observed using chronoamperometry. The best alcohol in this study was reported to be glycerol having given the highest current densities for all the inhouse catalysts compared to ethanol observed using LSV. From XRD and HR-TEM studies, particle sizes were in the range of 0.97 and 2.69 nm for XRD 3.44 and 7.20 nm for HR-TEM with a little agglomeration for PdMn3O4 and PdMn3O4NiO.

Page generated in 0.1134 seconds