• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Entwicklung und Abstimmung eines Momentenmodells für eine Otto-DI-Motorsteuerung

Pietzsch, Albrecht 25 January 2018 (has links) (PDF)
Die Zulieferindustrie im Automobilbereich sieht sich heutzutage hochkomplexen Systemen bei der Entwicklung von Verbrennungsmotoren gegenüber. Applikationssteuergeräte mit passendem Datenstand werden selten von Fahrzeugherstellern an Dritte für die Entwicklung am Verbrennungsmotor bereitgestellt. Eine Alternative bieten Prototypensteuergeräte mit individuellen Softwarepaketen, die in ihrer Funktionalität auf die Bedürfnisse der Entwicklungsingenieure zugeschnitten sind. Die FlexECU von ETAS ist ein gutes Beispiel für solch ein offenes, kostengünstiges und seriennahes Prototypensteuergerät. Hauptbestandteil dieser Arbeit ist die Entwicklung und Integration eines Momentemodells in eine vorhandene Motorsteuerungssoftware sowie die Applikation dieses Modells am Motorprüfstand. Die Motivation für die Erweiterung der jetzigen Motorsteuerungssoftware um das Momentemodell ist, den Entwicklungsingenieuren ein möglichst seriennahes Steuergeräteumfeld bei der Erarbeitung innovativer verbrauchs- und schadstoffoptimierter Konzepte für den Verbrennungsmotor bereitzustellen. Bei der Evaluation wird gezeigt, dass die Integration und die Funktion des Momentenmodells grundsätzlich gelungen ist. Diese Arbeit bildet den Grundstein für eine umfangreiche Entwicklung, die noch einige Zeit in Anspruch nehmen wird, bis eine voll umfängliche abgesicherte Software geschaffen ist. / Nowadays, the automotive supplier industry is confronted with highly complex systems for the development of internal combustion engines. Vehicle manufacturers very rarely provide third party developers with their engine control units with calibration access and matching description and data files for internal combustion engines. An alternative are prototype control units with individual software packages, which in their functionality are adapted to the needs of development engineers. One example for such an open, cost-effective and field-proven control system development platform is FlexECU from ETAS. The essential part of this thesis is the development and integration of a torque-based system structure for an existing engine management system and the calibration of this model on an engine test bench. The motivation for this improvement is to provide development engineers with a control unit environment as close to serial as possible for the development of consumption- and emission-optimized concepts for internal combustion engines. The evaluation shows that integration as well as functionality of the torque-based system structure has generally been achieved. This thesis lays the foundations for an extensive development of this system – although the creation of a fully verified and validated software will still take some time.
2

Entwicklung und Abstimmung eines Momentenmodells für eine Otto-DI-Motorsteuerung

Pietzsch, Albrecht 18 December 2017 (has links)
Die Zulieferindustrie im Automobilbereich sieht sich heutzutage hochkomplexen Systemen bei der Entwicklung von Verbrennungsmotoren gegenüber. Applikationssteuergeräte mit passendem Datenstand werden selten von Fahrzeugherstellern an Dritte für die Entwicklung am Verbrennungsmotor bereitgestellt. Eine Alternative bieten Prototypensteuergeräte mit individuellen Softwarepaketen, die in ihrer Funktionalität auf die Bedürfnisse der Entwicklungsingenieure zugeschnitten sind. Die FlexECU von ETAS ist ein gutes Beispiel für solch ein offenes, kostengünstiges und seriennahes Prototypensteuergerät. Hauptbestandteil dieser Arbeit ist die Entwicklung und Integration eines Momentemodells in eine vorhandene Motorsteuerungssoftware sowie die Applikation dieses Modells am Motorprüfstand. Die Motivation für die Erweiterung der jetzigen Motorsteuerungssoftware um das Momentemodell ist, den Entwicklungsingenieuren ein möglichst seriennahes Steuergeräteumfeld bei der Erarbeitung innovativer verbrauchs- und schadstoffoptimierter Konzepte für den Verbrennungsmotor bereitzustellen. Bei der Evaluation wird gezeigt, dass die Integration und die Funktion des Momentenmodells grundsätzlich gelungen ist. Diese Arbeit bildet den Grundstein für eine umfangreiche Entwicklung, die noch einige Zeit in Anspruch nehmen wird, bis eine voll umfängliche abgesicherte Software geschaffen ist.:Abkürzungsverzeichnis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I Verzeichnis der Formelzeichen und Symbole . . . . . . . . . . . . . . . II Variablenverzeichnis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .V Abbildungsverzeichnis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VII Tabellenverzeichnis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .VIII 1. Einleitung 1 1.1. Aufgabenstellung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1 1.2. Zielsetzung und Aufbau der Arbeit . . . . . . . . . . . . . . . . . . .1 2. Stand der Technik 4 2.1. Steuerung und Regelung von Ottomotoren . . . . . . . . . . . . 4 2.2. Architektur Motorsteuerungssoftware . . . . . . . . . . . . . . . . 7 2.3. Das Momentenmodell . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 3. Theoretische Grundlagen 15 3.1. Innermotorische Drehmomentenerzeugung . . . . . . . . . . .15 3.2. Eingriffsmöglichkeiten und deren Geschwindigkeit . . . . . .18 4. Modellierung des Momentenmodells 20 4.1. Entwicklungsumgebung . . . . . . . . . . . . . . . . . . . . . . . . . .20 4.2. Modellbildung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21 5. Versuch 34 5.1. Versuchsplanung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 5.2. Versuchsträger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37 5.2.1. ETAS FlexECU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 5.2.2. Simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 5.2.3. Versuchsmotor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 5.2.4. Motorprüfstand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40 5.3. Applikationssoftware . . . . . . . . . . . . . . . . . . . . . . . . . . . .41 5.3.1. ETAS INCA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42 5.3.2. ETAS MDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 5.3.3. ETAS ASCMO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43 6. Vorstellung der Ergebnisse . . . . . . . . . . . . . . . . . . . . . . . . .45 6.1. Ergebnisse der Applikation des Momentemodells . . . . . . 45 6.2. Evaluierung der Drehmomentumsetzung des Momentenmodells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 6.3. Evaluierung der Untersysteme des Momentenmodells . . 62 7. Zusammenfassung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71 Literatur- und Quellenverzeichnis . . . . . . . . . . . . . . . . . . . . . 75 Eidesstattliche Erklärung . . . . . . . . . . . . . . . . . . . . . . . . . . . .76 Anlagenverzeichnis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 / Nowadays, the automotive supplier industry is confronted with highly complex systems for the development of internal combustion engines. Vehicle manufacturers very rarely provide third party developers with their engine control units with calibration access and matching description and data files for internal combustion engines. An alternative are prototype control units with individual software packages, which in their functionality are adapted to the needs of development engineers. One example for such an open, cost-effective and field-proven control system development platform is FlexECU from ETAS. The essential part of this thesis is the development and integration of a torque-based system structure for an existing engine management system and the calibration of this model on an engine test bench. The motivation for this improvement is to provide development engineers with a control unit environment as close to serial as possible for the development of consumption- and emission-optimized concepts for internal combustion engines. The evaluation shows that integration as well as functionality of the torque-based system structure has generally been achieved. This thesis lays the foundations for an extensive development of this system – although the creation of a fully verified and validated software will still take some time.:Abkürzungsverzeichnis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I Verzeichnis der Formelzeichen und Symbole . . . . . . . . . . . . . . . II Variablenverzeichnis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .V Abbildungsverzeichnis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VII Tabellenverzeichnis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .VIII 1. Einleitung 1 1.1. Aufgabenstellung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1 1.2. Zielsetzung und Aufbau der Arbeit . . . . . . . . . . . . . . . . . . .1 2. Stand der Technik 4 2.1. Steuerung und Regelung von Ottomotoren . . . . . . . . . . . . 4 2.2. Architektur Motorsteuerungssoftware . . . . . . . . . . . . . . . . 7 2.3. Das Momentenmodell . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 3. Theoretische Grundlagen 15 3.1. Innermotorische Drehmomentenerzeugung . . . . . . . . . . .15 3.2. Eingriffsmöglichkeiten und deren Geschwindigkeit . . . . . .18 4. Modellierung des Momentenmodells 20 4.1. Entwicklungsumgebung . . . . . . . . . . . . . . . . . . . . . . . . . .20 4.2. Modellbildung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21 5. Versuch 34 5.1. Versuchsplanung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 5.2. Versuchsträger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37 5.2.1. ETAS FlexECU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 5.2.2. Simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 5.2.3. Versuchsmotor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 5.2.4. Motorprüfstand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40 5.3. Applikationssoftware . . . . . . . . . . . . . . . . . . . . . . . . . . . .41 5.3.1. ETAS INCA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42 5.3.2. ETAS MDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 5.3.3. ETAS ASCMO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43 6. Vorstellung der Ergebnisse . . . . . . . . . . . . . . . . . . . . . . . . .45 6.1. Ergebnisse der Applikation des Momentemodells . . . . . . 45 6.2. Evaluierung der Drehmomentumsetzung des Momentenmodells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 6.3. Evaluierung der Untersysteme des Momentenmodells . . 62 7. Zusammenfassung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71 Literatur- und Quellenverzeichnis . . . . . . . . . . . . . . . . . . . . . 75 Eidesstattliche Erklärung . . . . . . . . . . . . . . . . . . . . . . . . . . . .76 Anlagenverzeichnis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
3

Combustion modeling for virtual SI engine calibration with the help of 0D/3D methods / Verbrennungsmodellierung für die virtuelle Applikation von Ottomotoren unter Verwendung von 0D- und 3D-Methoden

Grasreiner, Sebastian 26 July 2012 (has links) (PDF)
Spark ignited engines are still important for conventional as well as for hybrid power trains and are thus objective to optimization. Today a lot of functionalities arise from software solutions, which have to be calibrated. Modern engine technologies provide an extensive variability considering their valve train, fuel injection and load control. Thus, calibration efforts are really high and shall be reduced by introduction of virtual methods. In this work a physical 0D combustion model is set up, which can cope with a new generation of spark ignition engines. Therefore, at first cylinder thermodynamics are modeled and validated in the whole engine map with the help of a real-time capable approach. Afterwards an up to date turbulence model is introduced, which is based on a quasi-dimensional k-epsilon-approach and can cope with turbulence production from large scale shearing. A simplified model for ignition delay is implemented which emphasizes the transfer from laminar to turbulent flame propagation after ignition. The modeling is completed with the calculation of overall heat release rates in a 0D entrainment approach with the help of turbulent flame velocities. After validation of all sub-models, the 0D combustion prediction is used in combination with a 1D gas exchange analysis to virtually calibrate the modern engine torque structure and the ECU function for exhaust gas temperature with extensive simulations. / Moderne Ottomotoren spielen heute sowohl in konventionellen als auch hybriden Fahrzeugantrieben eine große Rolle. Aktuelle Konzepte sind hochvariabel bezüglich Ventilsteuerung, Kraftstoffeinspritzung und Laststeuerung und ihre Optimierungspotentiale erwachsen zumeist aus neuen Softwarefunktionen. Deren Applikation ist zeit- und kostenintensiv und soll durch virtuelle Methoden unterstützt werden. In der vorliegenden Arbeit wird ein physikalisches 0D Verbrennungsmodell für Ottomotoren aufgebaut und bis zur praktischen Anwendung geführt. Dafür wurde zuerst die Thermodynamik echtzeitfähig modelliert und im gesamten Motorenkennfeld abgeglichen. Der Aufbau eines neuen Turbulenzmodells auf Basis der quasidimensionalen k-epsilon-Gleichung ermöglicht anschließend, die veränderlichen Einflüsse globaler Ladungsbewegung auf die Turbulenz abzubilden. Für den Brennverzug wurde ein vereinfachtes Modell abgeleitet, welches den Übergang von laminarer zu turbulenter Flammenausbreitung nach der Zündung in den Vordergrund stellt. Der restliche Brennverlauf wird durch die physikalische Ermittlung der turbulenten Brenngeschwindigkeit in einem 0D Entrainment-Ansatz dargestellt. Nach Validierung aller Teilmodelle erfolgt die virtuelle Bedatung der Momentenstruktur und der Abgastemperaturfunktion für das Motorsteuergerät.
4

Combustion modeling for virtual SI engine calibration with the help of 0D/3D methods

Grasreiner, Sebastian 06 July 2012 (has links)
Spark ignited engines are still important for conventional as well as for hybrid power trains and are thus objective to optimization. Today a lot of functionalities arise from software solutions, which have to be calibrated. Modern engine technologies provide an extensive variability considering their valve train, fuel injection and load control. Thus, calibration efforts are really high and shall be reduced by introduction of virtual methods. In this work a physical 0D combustion model is set up, which can cope with a new generation of spark ignition engines. Therefore, at first cylinder thermodynamics are modeled and validated in the whole engine map with the help of a real-time capable approach. Afterwards an up to date turbulence model is introduced, which is based on a quasi-dimensional k-epsilon-approach and can cope with turbulence production from large scale shearing. A simplified model for ignition delay is implemented which emphasizes the transfer from laminar to turbulent flame propagation after ignition. The modeling is completed with the calculation of overall heat release rates in a 0D entrainment approach with the help of turbulent flame velocities. After validation of all sub-models, the 0D combustion prediction is used in combination with a 1D gas exchange analysis to virtually calibrate the modern engine torque structure and the ECU function for exhaust gas temperature with extensive simulations.:Contents 1 Introduction. 2 Thermodynamic modeling with real-time capability. 3 Quasi-dimensional modeling of turbulence and global charge motion. 4 Physical modeling of ignition delay. 5 Combustion modeling based on a 0D entrainment approach. 6 Virtual engine calibration with a quasi-dimensional combustion model. 7 Summary and outlook. / Moderne Ottomotoren spielen heute sowohl in konventionellen als auch hybriden Fahrzeugantrieben eine große Rolle. Aktuelle Konzepte sind hochvariabel bezüglich Ventilsteuerung, Kraftstoffeinspritzung und Laststeuerung und ihre Optimierungspotentiale erwachsen zumeist aus neuen Softwarefunktionen. Deren Applikation ist zeit- und kostenintensiv und soll durch virtuelle Methoden unterstützt werden. In der vorliegenden Arbeit wird ein physikalisches 0D Verbrennungsmodell für Ottomotoren aufgebaut und bis zur praktischen Anwendung geführt. Dafür wurde zuerst die Thermodynamik echtzeitfähig modelliert und im gesamten Motorenkennfeld abgeglichen. Der Aufbau eines neuen Turbulenzmodells auf Basis der quasidimensionalen k-epsilon-Gleichung ermöglicht anschließend, die veränderlichen Einflüsse globaler Ladungsbewegung auf die Turbulenz abzubilden. Für den Brennverzug wurde ein vereinfachtes Modell abgeleitet, welches den Übergang von laminarer zu turbulenter Flammenausbreitung nach der Zündung in den Vordergrund stellt. Der restliche Brennverlauf wird durch die physikalische Ermittlung der turbulenten Brenngeschwindigkeit in einem 0D Entrainment-Ansatz dargestellt. Nach Validierung aller Teilmodelle erfolgt die virtuelle Bedatung der Momentenstruktur und der Abgastemperaturfunktion für das Motorsteuergerät.:Contents 1 Introduction. 2 Thermodynamic modeling with real-time capability. 3 Quasi-dimensional modeling of turbulence and global charge motion. 4 Physical modeling of ignition delay. 5 Combustion modeling based on a 0D entrainment approach. 6 Virtual engine calibration with a quasi-dimensional combustion model. 7 Summary and outlook.

Page generated in 0.0661 seconds